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ABSTRACT

Introduction: Diabetes mellitus comprises a spectrum of metabolic disorders in which the body
cannot adequately regulate blood glucose. In 2019, it ranked sixth among global causes of death,
accounting for approximately 1.5 million fatalities. Current therapies rely on exogenous insulin or
replacement of insulin-producing B-cells through whole-pancreas or isolated islet transplantation.
Pluripotent stem cell (PSC)-based therapy offers a renewable source of patient-specific B-cells
capable of restoring endogenous insulin production. Areas Covered: Recent breakthroughs in
directing PSCs—both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)—
toward pancreatic lineages are summarized in this review. PSCs efficiently differentiate into func-
tional, glucose-responsive B-cells as well as supportive islet cell types, broadening their therapeu-
tic scope. Notably, patient-derived iPSCs created from diverse diabetic phenotypes can be gene-
corrected and matured into insulin-secreting cells, paving the way for personalized medicine. Cou-
pling PSC technology with CRISPR gene editing, 3-D organoid culture, and immune-evasive en-
capsulation devices is now moving first-in-human trials toward durable, insulin-independent out-
comes. Expert Opinion: Autologous PSC models not only enable mechanistic studies of diabetes
pathogenesis but also guide precision drug discovery and cell-replacement strategies. To translate
PSC therapy from bench to bedside, the field must still optimize differentiation yield, verify long-
term safety, resolve immunogenic and ethical issues, and standardize manufacturing under Good

Manufacturing Practice (GMP) conditions.
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INTRODUCTION

Diabetes mellitus affected an estimated 537 million
people worldwide in 2021 and, according to the In-
ternational Diabetes Federation, this number could
rise to 783 million by 2045, It imposes substantial
premature morbidity and mortality. The disease is
primarily divided into type 1 (T1D) and type 2 (T2D).
T1D is an autoimmune disease in which autoreactive
lymphocytes destroy pancreatic 3-cells, eliminating
endogenous insulin secretion?.

Individuals with T1D therefore depend on lifelong
exogenous insulin. By contrast, T2D represents ~90
% of all diabetes cases and results from a combina-
tion of peripheral insulin resistance and insufficient
compensatory insulin secretion by f-cells. Ongoing
research continues to clarify the molecular mecha-
nisms that drive T2D onset and progression .
Monogenic forms of diabetes also exist, most notably
neonatal diabetes mellitus (NDM) and maturity-
onset diabetes of the young (MODY)%. NDM
presents within the first six months of life and affects
approximately 1 in 300 000-400 000 live births%°.

MODY, an autosomal-dominant -cell disorder that
typically manifests in adolescence or early adult-
hood, accounts for <5 % of all diabetes cases”-.
Molecular testing has so far delineated 14 MODY
subtypes®.

Because stem cells can modulate immune responses
and differentiate into insulin-producing f3-like cells,
they are being explored as innovative therapies for
diabetes 19-12, Stem cells are classically categorized
as totipotent, pluripotent, multipotent, oligopotent,
or unipotent, depending on their developmental po-
tential 3. In a pioneering trial, Voltarelli et al. (2007)
infused autologous hematopoietic stem cells (HSCs)
into patients with recent-onset T1D and reported

partial remission 4.

Subsequently, Bhansali et al.
(2009) showed that bone-marrow-derived stem cells
can safely improve f-cell function in T2D15. Nu-
merous trials have since evaluated various stem-cell
sources; however, the optimal cell type, dose, and de-
livery route remain to be defined, and severe infec-
tions have occasionally been observed 1. Advances

in stem-cell derivation and bioprocessing aim to
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provide an unlimited, donor-independent supply of
transplantable fB-cells for regenerative medicine 1’
(Figure 1).

Embryonic stem cells (ESCs) are derived from the
inner cell mass of the blastocyst, whereas induced
pluripotent stem cells (iPSCs) are reprogrammed
from somatic cells by ectopic expression of factors
such as OCT3/4, SOX2, KLF4, and c-MYC. Both ESCs
and iPSCs are pluripotent, meaning they can give
rise to virtually any cell type, including cardiomy-
ocytes, neurons, and pancreatic 3-cells 131° (Figure
2).

Precision genome-editing, particularly CRISPR-
Cas9, now allows targeted modification of tran-
scription factors and signaling pathways in hu-
man pluripotent stem cells (hPSCs). Knockout
of ARX, NKX6-1, or NEUROD1 clarifies endocrine
lineage specification, whereas knock-in reporters
such as PDX1-GFP or INS-mCherry permit real-
time monitoring of B-cell maturation.
tion of pathogenic variants (e.g, HNF1A, INS)
in patient-specific iPSCs paves the way for per-

Correc-

sonalised cell-replacement therapies??. Single-cell
RNA-seq and ATAC-seq provide high-resolution
atlases of in-vitro differentiation, revealing rare
progenitors, off-target populations, and regula-
tors of B-cell maturation; only a fraction of de-
rived cells fully resembles fetal or adult islets?!.
Engineering 3D microenvironments—vascularised
islet organoids, hydrogel scaffolds, organ-on-a-
chip systems—improves glucose responsiveness, en-
docrine maturity, and cell survival by recapitulat-
ing paracrine cues, extracellular-matrix signals, and
biomechanical stiffness?2. Together, these innova-
tions are propelling stem-cell science from proof-of-
concept studies toward robust, scalable, and clini-
cally translatable regenerative therapies for diabetes.

PATHOPHYSIOLOGY OF
DIABETES

Diabetes mellitus (DM) comprises a spectrum of
metabolic disorders characterized by persistent hy-
perglycemia, yet the etiology and underlying mech-
anisms differ among subtypes. Appreciating these
distinctions is critical to targeted prevention, ac-
curate diagnosis, and effective therapy. The prin-
cipal forms are type 1 diabetes (T1D), type 2 di-
abetes (T2D), gestational diabetes mellitus (GDM),
and monogenic variants such as neonatal diabetes
and maturity-onset diabetes of the young (MODY).

Type 1 Diabetes Mellitus (T1D)

T1D is a prototypic autoimmune disease in which
autoreactive T lymphocytes progressively destroy
pancreatic -cells within the islets of Langerhans,
culminating in absolute insulin deficiency. Both
susceptibility—particularly HLA-DR/DQ
viral
infections) initiate the immune assault. Pathological

genetic
alleles—and environmental triggers (e.g.,

hallmarks include insulitis, B-cell apoptosis, and
cD8* 23—25.
Circulating islet-autoantibodies (against GAD65,

dense cytotoxic T-cell infiltration
IA-2, ZnT8, etc.) often precede clinical presentation
and serve as predictive biomarkers. Oxidative stress
and pro-inflammatory cytokine cascades further ac-
celerate B-cell loss2%. Because autoimmune activity
usually persists after diagnosis despite intensive
glycemic control, adjunctive immunomodulatory

strategies are being explored.

Type 2 Diabetes Mellitus (T2D)

T2D arises from the synergy of peripheral insulin
resistance and progressive f3-cell dysfunction. Ini-
tially, skeletal muscle, liver, and adipose tissue be-
come less responsive to insulin, prompting compen-
satory hyperinsulinemia. Hyperglycemia develops
once B-cells can no longer sustain this output 2723,
Thus, T2D is defined by the dual defects of insulin
resistance and relative insulin deficiency. Obesity-
related inflammation, lipotoxicity, and mitochon-
drial dysfunction drive resistance; adipose-derived
cytokines such as TNF-o and IL-6 impair insulin
signalling, whereas chronic glucotoxicity induces f3-

cell exhaustion and epigenetic alterations 2930,

Gestational Diabetes Mellitus (GDM)

GDM manifests when maternal 3-cells cannot coun-
terbalance the insulin-resistant milieu created by
placental hormones (e.g., progesterone, human pla-
cental lactogen)31. Screening typically occurs at 24—
28 weeks’ gestation®2. Women with pre-existing -
cell impairment or risk factors—obesity, advanced
maternal age, positive family history—are especially
susceptible. Although glucose tolerance usually nor-
malises postpartum, GDM unmasks an underlying
metabolic vulnerability and substantially elevates
future T2D risk 33,

Monogenic Diabetes (MODY and Neonatal
Diabetes)

Monogenic forms result from single-gene mutations
that disrupt B-cell development, glucose sensing, in-
sulin synthesis, or secretion, and are unrelated to au-
toimmunity or insulin resistance. In MODY, which is
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Figure 1: Stem cell lineages have the potential to differentiate into 3-cell lineages.

typically autosomal-dominant and presents in ado-
lescence or early adulthood, hyperglycaemia is non-

ketotic and non-insulin-resistant®.

such mutations are confirmed, high-dose sulfony-

lureas can replace insulin therapy 3.

Common sub-
types include GCK-MODY, characterised by mild,

Secondary Diabetes

stable fasting hyperglycaemia due to impaired glu-

cose sensing, and HNF1A-MODY, which shows pro-
gressive B-cell failure yet responds well to low-dose
sulfonylureas®*. Neonatal diabetes mellitus (NDM)
appears within the first six months of life; mutations

in KCNJ11 or ABCCS8 blunt ATP-sensitive K* chan-
35

nel closure, suppressing insulin release

Secondary diabetes denotes hyperglycaemia caused
by disorders or treatments that disturb glucose
homeostasis rather than primary defects in insulin

action or secretion. Examples include chronic pan-

37

creatitis37, haemochromatosis38, Cushing’s syn-

39

When drome””, and prolonged exposure to glucocorti-
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41 Mechanisms

coids?® or atypical antipsychotics
range from direct B-cell injury to severe insulin re-

sistance at the receptor or post-receptor level.

THE VITALITY OF B-CELLS

Pancreatic -cells within the islets of Langerhans
orchestrate insulin secretion and are therefore cen-
tral to glucose homeostasis. In diabetes, hyper-
lipidaemia, hyper-glycaemia and chronic inflam-
mation converge to provoke endoplasmic-reticulum
(ER) stress, oxidative stress and mitochondrial dys-
function, ultimately driving f-cell death and de-
Although ER and mitochondrial

stress individually impair B-cell viability, recent

differentiation.

work highlights their synergistic amplification of
reactive oxygen-species (ROS) generation 4243, f-
cells inherently produce high ROS yet possess only
modest antioxidant defences, rendering them ex-

ceptionally vulnerable to oxidative injury and func-

tional collapse 4445,

In type 1 diabetes (T1D) the immune system elimi-
nates ~90 % of f-cells, causing an early fall in in-
sulin output that precedes overt hyper-glycaemia.
Intriguingly, residual f-cells often persist in people
with long-standing T1D %, implying that low-level
endogenous insulin secretion can continue 4”43, In
type 2 diabetes (T2D) approximately half of the orig-
49,50 Butler

analysed 124 human pancreata and found

inal B-cell mass remains at diagnosis
et al
B-cell apoptosis was elevated ten-fold in lean T2D
and three-fold in obese T2D, independent of auto-
immunity>!. These observations underscore the im-
portance of preserving or restoring f3-cell mass to
maintain euglycaemia, making f3-cell replacement a
rational strategy for both T1D and T2D 2. Whole-
pancreas or islet transplantation can normalize gly-
caemia but is limited by donor scarcity, surgical risk

and lifelong immuno-suppression. Consequently,
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stem-cell-derived f3-cells have emerged as an attrac-

tive, potentially unlimited alternative source >3%4.

KEY FEATURES OF PLURIPOTENT
STEM CELLS (PSCS)

PSC populations—embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs)—combine un-
limited self-renewal with the capacity to generate
derivatives of all three germ layers. ESCs originate
from the inner cell mass of the blastocyst, whereas
iPSCs arise when somatic cells are reprogrammed
by OCT4, SOX2, KLF4 and c¢-MYC expression (the
Yamanaka factors)®®. Pluripotency is sustained by
interconnected transcription-factor networks, epi-
genetic regulators and signalling cascades includ-
ing WNT, TGF-f/Activin/Nodal and FGF. This de-
velopmental plasticity underpins applications in re-
generative medicine, disease modelling and high-
throughput drug discovery. Nonetheless, genetic in-
stability, tumourigenicity and line-to-line variability
mandate rigorous quality control.

The 2006 discovery of iPSCs by Takahashi & Ya-
manaka revolutionised the field by providing an
ethically acceptable ESC surrogate>=¢1. Advances
in vector design—from integrating retroviruses to
non-integrating episomes, Sendai virus and mRNA—
have enhanced reprogramming safety and effi-
ciency®27%%. Today, patient-specific iPSC lines en-
able precise disease modelling and personalised cell-
based therapies, underscoring PSCs’ transformative
potential 3.

DIRECTED DIFFERENTIATION OF
PSCS

To generate functional cell types, researchers re-
capitulate embryogenesis in vitro using serum-free
media, defined growth factors and stepwise sig-
nalling cues. For example, VEGF plus other an-
giogenic factors yield endothelial cells®®; multi-
stage Activin-A/retinoic-acid/Notch modulation di-
BMP4,

FGF and HGF drive hepatic specification toward

rects PSCs to pancreatic f-like cells®7;

hepatocyte-like cells®®; and 3-D culture of porcine
iPSCs with retina-specific factors forms laminated
retinal organoids ®°. Ongoing protocol optimisation
is boosting purity, scalability and reproducibility, ac-
celerating deployment of PSC-derived cells in drug

screening, disease modelling and regenerative ther-

apy.

ETHICAL AND CLINICAL ISSUES
IN PLURIPOTENT STEM CELL
TECHNOLOGIES

Research involving pluripotent stem cells, including
embryonic stem cells (ESCs) and induced pluripotent
stem cells (iPSCs), holds tremendous promise for
regenerative medicine and disease modeling; how-
ever, it is also accompanied by significant ethical
and clinical challenges that demand careful analysis
and innovative solutions”®. The main ethical con-
troversy surrounding ESCs arises from the need to
destroy embryos during derivation, prompting in-
tense debate over the moral status of the embryo
and leading to diverse regional regulations that, in
turn, shape funding, research priorities, and clinical
translation’!. Although iPSCs circumvent embryo
destruction and have revolutionized the field, they
introduce fresh ethical and safety concerns that like-
wise require rigorous oversight 72.

Early-generation iPSC protocols relied on oncogenic
transcription factors, raising fears of tumorigen-
esis and underscoring the necessity for safer re-
programming methods that preserve genomic in-
tegrity’3. Integration-free techniques now miti-
gate many of these risks, yet confirming both ge-
nomic and epigenetic stability in patient-derived
iPSC lines remains a critical bottleneck before clin-
ical deployment’%. Because undifferentiated PSCs
can form teratomas, transplantation therapies must
meet stringent safety thresholds and demonstrate
robust efficacy 7°. Even autologous iPSC-based ther-
apies face variability in line-to-line quality, compli-
cating standardization and quality control 777,

TRANSFORMATION OF
PLURIPOTENT STEM CELLS INTO
B-CELLS THAT SECRETE INSULIN

Successful differentiation of PSCs into insulin-
producing fB-cells hinges on precise control of the
culture microenvironment and a deep understanding
of developmental signaling cues. Human ESCs, de-
rived from the inner cell mass of blastocysts, possess
unique epigenetic landscapes that preserve pluripo-
tency; establishing stable hESC lines that faithfully
recapitulate primary ESC characteristics is therefore
essential for an unlimited cell supply 787,

Step-wise protocols have converted hESCs into
insulin-secreting cells, initially achieving ~12 % effi-
ciency but with limited glucose responsiveness. Sub-
sequent optimization—such as fine-tuning in-vitro
glucose levels and modulating growth factors like
Transforming Growth Factor (TGF)—has boosted
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yields to ~25 %8981, These findings underscore the
need for early-stage interventions that protect or
regenerate endogenous f3-cell mass, or for replace-
ment strategies using engineered stem-cell-derived
islet-like clusters 32.

Standard differentiation proceeds through definitive
endoderm (SOX17%), pancreatic progenitor (PDX17),
endocrine progenitor (NGN3*), and finally mature
B-cell stages. At each step, specific factors are ap-
plied, and stage-specific markers confirm proper lin-

eage progression 3.

STEM CELL TRANSPLANTATION
AND TREATMENT

Transplantation studies indicate that the in-vitro mi-
croenvironment strongly affects pancreatic progeni-
tor expansion and maturation. Using immature pan-
creatic progenitors rather than fully differentiated
cells consistently enhances in-vivo f-cell develop-
ment. For example, pancreatic precursors derived
from hESCs become glucose-responsive, insulin-
secreting f3-cells after implantation under the kid-
ney capsule or into adipose tissue of streptozotocin
(STZ)-induced diabetic mice®*. Likewise, iPSC-
derived grafts placed in both T1D and T2D mouse
models acquire glucose-regulated insulin secretion

and reduce hyperglycaemia 3’

. Transplantation of
non-human-primate iPSCs achieves comparable gly-
caemic improvement in murine diabetes models3°.
In the NOD mouse, iPSC-derived insulin-producing
cells transplanted into the kidney respond appro-
priately to rising glucose concentrations3”. Col-
lectively, these findings show that extensive pre-
transplant in-vitro patterning is essential, whereas
site-specific in-vivo cues complete endocrine matu-

ration.

Differentiation of PSCs

B-cell differentiation from PSCs starts with induc-
tion of definitive endoderm (DE). Current protocols
drive 60-80 % of hESCs toward DE that co-express
SOX17, FOXA2, CXCR4, and GSC38.
A-mediated Nodal signalling and canonical Wnt

Activin-
are the two dominant pathways. High-dose ac-
tivin A (50-100 ng ml-1) in serum-free medium
reliably generates DE and simultaneously exerts
paracrine/autocrine survival effects on adult human
islets8%. Addition of sodium butyrate or PI3K in-
hibitors further boosts DE yield °°.

Supplementing activin A with Wnt3A, CHIR99021 (a
GSK3 inhibitor), or BMP4 can further improve DE
induction, with CHIR99021 generally outperforming

Wnt3A for SOX17/FOXA2 expression. Growth-and-
differentiation-factor-8 (GDF-8, myostatin) as well
as the small molecules IDE1/IDE2 can each convert
~ 80 % of hESCs into DE cells *1.

To steer DE away from hepatic fate and toward pan-
creatic lineage, BMP and FGF signals are usually
blocked with Noggin and SU5402, respectively 92,
Cyclopamine (a HEDGEHOG inhibitor), FGF10, and
Notch modulation (transient FGF10 followed by the
Y-secretase inhibitor DAPT) are then sequentially
applied to expand PDX1" pancreatic progenitors and
initiate endocrine commitment 3.

Dorsomorphin (a BMP type-I receptor blocker) plus
retinoic acid (RA) robustly induces PDX1" progen-
itors, whose proliferation is sustained by epider-
mal growth factor (EGF). Indolactam V further en-
riches this population 949, Transition from PDX1*
to NGN3* endocrine precursors is facilitated by
SB431542 (a TGF-f3 receptor inhibitor) and VMAT?2
inhibitors such as reserpine or tetrabenazine, ulti-
mately yielding glucose-responsive 3-like cells%6.
Final maturation is promoted with forskolin, dexam-
ethasone, hepatocyte growth factor, IGF-1, and GLP-
1 analogues. Expression of NKX6.1 is mandatory:
grafts with high NKX6.1 reverse hyperglycaemia in
diabetic mice, whereas NKX6.1-low grafts do not®”.
Mature hESC/hiPSC-derived B-like cells co-express
C-peptide, insulin, PDX1, MAFA, NKX6.1, NEU-
ROD1, ISL1, and GLUT2?8-100,

Forced expression of key transcription factors can
further enhance efficiency. PAX4 over-expression,
for example, elevates INS, PDX1, GLUT2, and C-
peptide transcripts 1°1, whereas PDX1 or FOXA2
alone provide minimal additional benefit 1027104,
Despite these advances, fully mature, glucose-
responsive f3-cells remain difficult to obtain in vitro,
and most protocols still yield cells with sub-optimal

dynamic insulin secretion.

Differentiation of human-induced PSCs

hiPSCs follow a similar five-stage trajectory—
SOX17" DE — PDX1" progenitor — NGN3" en-
docrine precursor — NKX6.1" immature f3-cell —
functionally mature f-cell 1957198 The first demon-
stration in 2008 used a four-step protocol to con-
vert dermal fibroblast—derived hiPSCs into glucose-

109 Nevertheless,

sensitive insulin-secreting cells
hiPSCs exhibit clone-to-clone heterogeneity: lines
from T1D donors generate DE efficiently but diverge

markedly at later pancreatic stages 1107112,
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Comparison of hESC- and hiPSC-based
protocols

Both cell types rely on sequential modulation of
Notch, BMP, Wnt, and TGF-f signalling and on
core transcription factors PDX1, NGN3, and NKX6.1.
However, hiPSCs often show variable NGN3 induc-
tion, greater signalling-pathway noise, and resid-
ual somatic epigenetic memory that can skew
differentiation away from pancreatic fate 113-115,
Consequently, hESCs generally achieve higher C-
peptide/insulin co-expression and superior glucose
responsiveness, whereas hiPSC-derived f-like cells
usually require extended in-vitro culture or in-vivo

maturation to reach comparable function 116:117,

SUCCESSION RATE OF 3-CELLS

Efficient expansion of f-cell mass from endoge-
nous sources requires simultaneously limiting f3-cell
apoptosis and stimulating new-cell formation. Fine-
good et al. (1995) quantitatively analysed f-cell
turnover by BrdU/thymidine labelling in rat pan-
creas 118, They calculated a daily turnover of ~2 %
of B-cells in adult rodents. Extended BrdU expo-
sure in adult mice showed that roughly 1 in 1,400
B-cells divides each day. Assuming no input from
neogenesis, trans-differentiation or other sources,
the daily growth rate equals 0.070 %11%120, Even
with zero B-cell death, replacing one-half of lost f3-
cell mass would therefore require ~1,429 days—far
longer than the average mouse life span. Human
calculations are limited, as BrdU cannot be used eth-
ically; Ki67 staining nevertheless indicates an even
slower turnover that can rise several-fold during
pregnancy 121,122,

An alternative strategy for diabetes therapy is to en-
hance endogenous f-cell renewal. Evidence shows
that B-cell mass is plastic and adapts to changing
secretory demand. Two main mechanisms are pro-
posed: (i) replication of existing f-cells and (ii) dif-
ferentiation of progenitors, possibly within the duc-
tal epithelium. Replication has been documented in
mice, rats and humans, and lineage-tracing in post-
natal mice demonstrates that most new f-cells de-
rive from pre-existing ones. The close anatomical re-
lationship between f-cells and pancreatic ducts sug-
gests a potential ductal progenitor source, but cross-
sectional studies cannot yet pinpoint the exact origin

of mature f3-cells 1187120 (

Figure 3). Thus, insulin-
positive cells observed near ducts in adult tissue may
simply reflect residual patterns of fetal pancreas de-

velopment rather than active duct-derived neogene-
sis 119,121,122

DERIVATION OF
PATIENT-SPECIFIC PLURIPOTENT
STEM CELLS FOR THE
TREATMENT OF DIABETES

The pathogenesis of different diabetes subtypes is
not fully understood. To address this gap, re-
searchers generate patient-specific pluripotent stem
cells (PSCs) from diabetic individuals as versatile in-
vitro disease models. These cells can be differenti-
ated into pancreatic lineages for mechanistic studies
or transplantation, thereby providing new insights

and enabling improved therapeutic strategies 123.

Patient-Specific Embryonic Stem Cells

Somatic Cell Nuclear Transfer (SCNT), also known
as therapeutic cloning, is used to create patient-
specific embryonic stem cells (ESCs) from a pa-
tient’s somatic cells. In SCNT, a somatic-cell nu-
cleus is transferred into an enucleated oocyte, pro-
ducing an embryo that is nearly genetically iden-
tical to the donor!?3. Although SCNT first pro-
duced the cloned sheep Dolly in 1997, it is still not a
routine method for generating patient-specific ESC
lines. Recent breakthroughs have finally demon-
strated successful reprogramming of human so-
matic cells into ESCs, after many unsuccessful at-
124 Notably, both hESCs and hiPSCs ap-

pear non-immunogenic after transplantation, sup-

tempts

porting the concept of diabetes-specific ESC thera-
pies 123124 Nevertheless, SCNT is limited by eth-
ical concerns and the scarcity of human oocytes.
An alternative source of hESCs is embryos classi-
fied as abnormal during pre-implantation genetic
diagnosis (PGD)123-125, PGD-derived hESCs have
been exploited to model monogenic diseases in-vitro,
but they cannot yield patient-specific ESCs for poly-
genic or idiopathic diabetes. Consequently, ethical
restrictions and technical hurdles continue to ham-
per the broad use of SCNT and PGD for diabetes re-

search 1237126,

Methods for Generation of Patient-

Specific Pluripotent Stem Cells

Because hESCs face ethical, immunological, and lo-
gistical constraints, investigators increasingly focus
on induced pluripotent stem-cell (iPSC) technology.
Generating hiPSCs from diabetic patients and differ-
entiating them into insulin-secreting cells provides a
powerful platform for dissecting the earliest mecha-
nisms of diabetes pathophysiology 19127,

In the first study, hiPSCs were produced from skin

fibroblasts of type-1-diabetes (T1D) patients using
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Figure 3: The regeneration of 3-cells for treating diabetes mellitus.

three transcription factors—OCT4, SOX2, and KLF4.
More recently, hiPSCs were derived from partic-
ipants with maturity-onset diabetes of the young
(MODY) to model the disease in vitro. After identify-
ing a heterozygous glucokinase (GCK) mutation, in-
vestigators generated MODY2-specific hiPSCs; their
efficiency to form insulin-secreting cells was com-
parable to control lines because the mutation is hy-
pomorphic 27, In contrast, iPSCs harboring biallelic
GCK inactivation showed markedly reduced f-cell
differentiation 128,

MODY?2 patients possess -cells with diminished
glucose sensitivity. Correcting the GCK mutation
in MODY2-hiPSCs restores normal f3-cell glucose
responsiveness, highlighting the utility of genome
editing. Using a polycistronic lentiviral vector, other

groups have derived hiPSCs from additional MODY
subtypes without karyotypic abnormalities, facilitat-
ing the study of gene-specific contributions to pan-
creatic development and diabetes 128,

Inter- and intra-patient variability in reprogram-
ming efficiency and differentiation potential has
been documented.  For example, iPSCs from
non-obese diabetic mice exhibited a compromised
pluripotent state, underscoring the influence of ge-
netic background 1®. Therefore, analysing multiple
patient-derived lines alongside clinical data is essen-
tial to pinpoint disease-predisposing factors.
Traditional iPSC generation relies on integrating vi-
ral vectors that permanently insert reprogramming
transgenes, raising risks of insertional mutagene-

sis and tumorigenicity. Non-integrating strategies—
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adenoviral delivery, Cre/LoxP excision, PiggyBac
transposition, episomal plasmids, Sendai virus, syn-
thetic mRNA and direct protein transduction—have
been developed to overcome these issues?. No-
tably, integration-free hiPSCs have been produced
from TI1D and type-2-diabetes (T2D) patients; the
Sendai viral genome is spontaneously lost after 8-
12 passages while pluripotency is maintained 127.
Eliminating viral transgenes reduces genomic alter-
ations and makes iPSCs safer for cell therapy and dis-
ease modelling. Because some reprogramming fac-
tors (e.g., MYC) are oncogenic, protocols omitting
them have been devised; for instance, hiPSCs from
T1D patients were generated using OCT4, SOX2 and
KLF4 without MYC 39,

UTILISING PSC-DERIVED CELLS
IN DIABETIC MOUSE MODELS: A
TREATMENT STRATEGY

Pluripotent stem cells (PSCs) possess the remark-
able ability to differentiate into almost any cell
type, making them indispensable tools for dia-
betes research ®3. Accordingly, diabetic mouse mod-
els are essential for dissecting disease mechanisms
and testing emerging therapies. Through con-
trolled in-vitro differentiation, investigators can gen-
erate insulin-producing pancreatic -cells, endothe-
lial cells, and immunomodulatory mesenchymal
stem cells (MSCs) from PSCs 131, When these PSC-
derived cells are transplanted into diabetic mice,
their effects on tissue regeneration, glycaemic con-
trol, and immune modulation can be quantified with
precision 132,

Transplantation of PSC-derived pancreatic f-cells
offers the possibility of restoring endogenous insulin
production and alleviating the consequences of in-
sulin deficiency. Outcomes are monitored by eval-
uating cell survival, engraftment within host pan-
creatic tissue, and the re-establishment of normo-
glycaemia 3. Such analyses are critical, as loss of
functional fB-cells is central to diabetes pathophysi-
ology 134,

PSC-derived endothelial cells additionally target the
vascular complications of diabetes, supporting vas-
cular repair and restoring blood flow to damaged tis-
sues and organs 135 Likewise, PSC-derived MSCs
exert potent anti-inflammatory and immunomodu-
latory effects that counter the inflammatory milieu
associated with diabetes. Mouse models allow re-
searchers to quantify their capacity to dampen im-
mune dysregulation, protect pancreatic cells, and ac-

celerate tissue repair 136,

Collectively, PSC-based interventions in diabetic
mouse models refine our understanding of the
disease and accelerate the development of next-

generation therapies for patients.

LATEST ADVANCES IN THE USE
OF PLURIPOTENT STEM CELLS
(PSCS) TO TREAT DIABETES

With its ability to precisely fix disease-causing mu-
tations and improve cell function, CRISPR-Cas9
technology has become a cornerstone in the ge-
netic engineering of PSCs. To restore normal in-
sulin expression in iPSC-derived f-cells, CRISPR
has been used to correct mutations in genes such
as HNF1A and GCK, thereby restoring normal in-
sulin expression in monogenic diabetes forms like
MODY (Maturity-Onset Diabetes of the Young)!37.
Additionally, CRISPR is being investigated to gen-
erate universal, immune-evasive f-cell grafts for
allogeneic transplantation by deleting immune-
recognition molecules such as HLA.

PSC-derived three-dimensional (3D)
organoids have revolutionized both in vitro mod-

pancreatic

eling and in vivo transplantation. These organoids
mimic native islet architecture and function,
including vasculature formation, cell-cell commu-
nication, and glucose-stimulated insulin release.
Stepwise development of PSCs into mature f-cells
within organoids is now possible thanks to pro-
tocols guiding differentiation through definitive
endoderm, pancreatic progenitors, and endocrine
precursors. To further enhance vascular integration
and insulin-release kinetics, these organoids can be
co-cultured with endothelial cells or embedded in
extracellular-matrix hydrogels 138,

The field is now entering the clinic, with multiple
stem-cell-derived products in human trials. ESC-
derived pancreatic islet cells are used in Vertex
Pharmaceuticals’ VX-880 program, which has suc-
cessfully restored insulin production in type 1 di-
abetes patients with undetectable C-peptide lev-
els13%. Similarly, ViaCyte’s PEC-Direct and PEC-
Encap systems administer PSC-derived B-cell pro-
genitors in encapsulated devices, aiming to achieve
long-term insulin independence in early-phase tri-

als and preclinical models14°.

However, foreign-
body responses impaired graft vascularization and
function in PEC-Encap (VC-01). In Phase 1/2 trials,
PEC-Direct—an open device that permits vascular-
ization but requires systemic immunosuppression—
generated partial C-peptide and insulin secretion yet

did not fully restore glycaemic control.
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Patient-specific iPSC-derived f-cells are now be-
ing integrated into high-throughput drug-screening
platforms to identify compounds that enhance in-
sulin secretion or promote f-cell survival, creating
a rapid feedback loop to clinical observation. The
convergence of PSCs, CRISPR editing, and organoid
technology is enabling high-throughput modeling
of both monogenic and complex polygenic diabetes.
Researchers now generate patient-specific, CRISPR-
edited islet organoids to dissect gene function, pre-
dict therapeutic response and validate candidate
drugs. These models recapitulate immune infiltra-
tion, ER stress, and -cell dysfunction—hallmarks of
both type 1 and type 2 diabetes.

ADDRESSING
CELL-PRODUCTION GUIDELINES
FOR PSC- AND IPSC-BASED
THERAPIES

Strict adherence to Good Manufacturing Practice
(GMP) is the cornerstone for translating pluripotent
stem cell (PSC) and induced pluripotent stem cell
(iPSC) products from the laboratory to the clinic.
By controlling cell sourcing, scale-up, contamina-
tion risk, and batch-to-batch consistency, GMP safe-
guards product safety, reproducibility, and regula-
tory acceptance.

Recent literature therefore centres on the transition
from bench-scale PSC cultures to pilot- and full-scale
manufacturing. Huang et al. (2020) present a com-
prehensive GMP-compatible suspension-bioreactor
workflow, detailing media optimisation, shear-stress
management, and process automation required for
clinical-grade expansion !, Similarly, Martins and
Ribeiro (2025) describe the creation of GMP Master
and Working Cell Banks, highlighting donor eligibil-
ity, traceability, and high-throughput quality control
under EU and U.S. regulations 142,

Thon and Karlsson (2017) show that feeder-free,
xeno-free, closed-system bioreactors markedly im-
prove reproducibility of platelet-producing PSC
derivatives and facilitate regulatory approval143.
Nath et al. (2020) further refine stirred-tank designs
with in-line sensors, automated batch records, and
continuous environmental monitoring, fully embed-
ding GMP in iPSC expansion and differentiation 144,
To minimise lot variability, Wong et al. (2017) in-
troduced the CryoPause® workflow, which cryop-
reserves fully characterised PSCs in a ready-to-use
format, enabling immediate and parallel differentia-
tion across GMP sites 145,

Demonstrating clinical relevance, Surendran et al.
(2025) report a scalable, allogeneic retinal-pigment-
epithelium (RPE) manufacturing process that meets
FDA Investigational New Drug criteria via GMP-
aligned cryopreservation, sterility, and endotoxin
removal 140, Likewise, Couture et al. (2014) provide
detailed standard operating procedures (SOPs) for
spinner-flask suspension culture that reliably gener-

ate undifferentiated PSCs at pilot scale 147,

DIFFICULTIES AND CHALLENGES
IN STEM CELL THERAPY FOR
DIABETES

Pluripotent stem cells (PSCs) now allow researchers
to reproduce diabetic pathology in vitro and to de-
sign cell-replacement strategies that were unthink-
able a decade ago. Recent work has shown that
patient-specific PSC lines can be differentiated into
pancreatic lineages, providing platforms both for
mechanistic studies and for the development of au-

148,149 Before these advances

tologous therapies
can reach the clinic, however, several obstacles must
be overcome. First, robust, tumor-safe differenti-
ation protocols are required to minimize the risk
of teratoma formation 4. Human embryonic stem
cells (hESCs) additionally raise ethical concerns and
problems of immune incompatibility, which cur-
rently restrict their clinical use. Somatic-cell nuclear
transfer (SCNT) has recently been used to create
hESC lines that are human-leukocyte-antigen (HLA)
matched to individual patients, potentially reducing
rejection 159,

Although induced PSCs (iPSCs) represent a land-
mark step toward autologous f-cell replacement,
important challenges remain. Comprehensive in-
vitro assays and long-term transplantation stud-
ies are still needed to confirm the function, safety
and durability of iPSC-derived B-cells.

integrity is a key issue because some reprogram-

Genomic

ming methods employ integrating viral vectors
that can introduce oncogenic or disruptive muta-
tions 13%151 Even non-viral techniques can gener-
ate copy-number variations or point mutations that
confound disease modelling; therefore, integration-
free reprogramming and rigorous genomic screen-
ing should be standard practice.

Cells
produced in most differentiation protocols still ex-

Another hurdle is incomplete maturation.

press early developmental markers such as DPPA4,
LIN28A and LIN28B, indicating a stage equivalent
to < 6.5-week human embryos and explaining their
poor glucose responsiveness %153, Refinement of
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stage-specific cues and 3-D culture systems is re-
quired to obtain fully mature, glucose-sensitive f3-
cells. Patient-to-patient and clone-to-clone variabil-
ity further complicate individualized therapies; fu-
ture work must elucidate and minimise these clonal
differences.

Emerging evidence also overturns the assumption
that autologous iPSC derivatives are intrinsically
immune-privileged. Deuse et al. (2019) demon-
strated that de-novo mitochondrial DNA (mtDNA)
mutations can provoke T-cell-mediated rejection

154.

in syngeneic hosts °*%; similar observations were

made by Sercel et al. (2021) and Bogomazova et
al. (2024) 155156 Hence, routine immunogenomic
screening—especially of mtDNA—should precede
any iPSC-based transplantation, even in autologous
settings.

Whether iPSCs can fully replace hESCs remains un-
resolved, and the limited comparative data published
so far underline the value of continuing hESC re-

search alongside iPSC efforts 127.

CONCLUSION AND FUTURE
PROSPECTS

PSC research continues to attract intense inter-
est because these cells can generate isogenic mod-
els of diabetes and theoretically provide unlimited
supplies of patient-matched PB-cells. To translate
this promise into therapy, investigators must elimi-
nate undifferentiated contaminants, perfect matura-
tion protocols, and address ethical and immunolog-
ical barriers. The creation of SCNT-derived, HLA-
matched hESCs and the advent of footprint-free iPSC
technologies offer encouraging solutions. Com-
bined with clinical-grade differentiation, 3-D islet-
organoid platforms and precise CRISPR editing, PSC
technology is progressing from glucose-control ad-
juncts toward durable, potentially curative interven-
tions. Multiple allogeneic islet products are already
in human trials, and genetically engineered, patient-
specific B-cells are close behind. With continued
multidisciplinary effort, PSC-based precision thera-
pies are expected to transform diabetes management
in the near future.

ABBREVIATIONS

3D: Three-Dimensional, ARX: Aristaless Related
Homeobox, ATAC-seq: Assay for Transposase-
Accessible Chromatin with sequencing, BMP4:
Bone Morphogenetic Protein 4, BrdU: Bromod-
eoxyuridine, Cas9: CRISPR-associated protein
9, CD8*: Cluster of Differentiation 8 Posi-
tive, CRISPR: Clustered Regularly Interspaced

Short Palindromic Repeats, CXCR4: C-X-C Mo-
tif Chemokine Receptor 4, DE: Definitive Endo-
derm, DM: Diabetes Mellitus, DPPA4: Develop-
mental Pluripotency Associated 4, EGF: Epidermal
Growth Factor, ER: Endoplasmic Reticulum, ESCs:
Embryonic Stem Cells, FDA: Food and Drug Admin-
istration, FGF: Fibroblast Growth Factor, FOXAZ2:
Forkhead Box A2, GAD65: Glutamic Acid De-
carboxylase 65, GCK: Glucokinase, GDM: Gesta-
tional Diabetes Mellitus, GDF-8: Growth and Dif-
ferentiation Factor-8, GFP: Green Fluorescent Pro-
tein, GMP: Good Manufacturing Practice, GSC:
Goosecoid Homeobox, GSK3: Glycogen Synthase
Kinase 3, HEDGEHOG: a signaling pathway, HGF:
Hepatocyte Growth Factor, HLA: Human Leuko-
cyte Antigen, HNF1A: Hepatocyte Nuclear Fac-
tor 1 Alpha, hPSCs:
Cells, HSCs: Hematopoietic Stem Cells, IA-2:
Insulinoma-Associated protein 2, IDE1/IDE2: In-
ducers of Definitive Endoderm 1 and 2, IGF-1:
Insulin-like Growth Factor 1, IL-6: Interleukin-6,
INS: Insulin, iPSCs: Induced Pluripotent Stem Cells,
ISL1: ISL LIM Homeobox 1, KLF4: Kriippel-like
factor 4, MAFA: MAF BZIP Transcription Factor
A, MODY: Maturity-Onset Diabetes of the Young,
MSCs: Mesenchymal Stem Cells, mtDNA: Mito-
chondrial DNA, MYC: Myelocytomatosis oncogene,
NDM: Neonatal Diabetes Mellitus, NEUROD1:
Neuronal Differentiation 1, NGN3: Neurogenin 3,
NKX6-1: NK6 Homeobox 1, NOD: Non-Obese Dia-
betic, OCT3/4: Octamer-Binding Transcription Fac-
tor 3/4, PAX4: Paired Box 4, PDX1: Pancreatic And
Duodenal Homeobox 1, PGD: Pre-implantation Ge-

Human Pluripotent Stem

netic Diagnosis, PI3K: Phosphoinositide 3-Kinase,
PSCs: Pluripotent Stem Cells, RA: Retinoic Acid,
RNA-seq: RNA sequencing, ROS: Reactive Oxygen
Species, RPE: Retinal Pigment Epithelium, SCNT:
Somatic Cell Nuclear Transfer, SOPs: Standard
Operating Procedures, SOX2: SRY-Box Transcrip-
tion Factor 2, SOX17: SRY-Box Transcription Fac-
tor 17, STZ: Streptozotocin, T1D: Type 1 Dia-
betes, T2D: Type 2 Diabetes, TGF-f3: Transforming
Growth Factor Beta, TNF-o: Tumor Necrosis Fac-
tor Alpha, VEGF: Vascular Endothelial Growth Fac-
tor, VMAT2: Vesicular Monoamine Transporter 2,
Wnt: Wingless-related integration site, ZnT8: Zinc

Transporter 8
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