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Spectroscopic Decryption of Epigenetic Remodeling Driving T
Cell Exhaustion in Glioblastoma: A Path to Immunotherapeutic
Reinvigoration

Arpita Mukherjee1,*,

ABSTRACT
Glioblastoma (GBM) is the most aggressive and lethal primary brain tumour and remains largely
refractory to immunotherapy owing to its profoundly immunosuppressive and metabolically re-
programmed tumour microenvironment (TME). A principal barrier is T-cell exhaustion—a termi-
nally differentiated, dysfunctional state characterised by sustained expression of inhibitory im-
mune checkpoints, transcriptional repression, epigenetic fixation, and progressive loss of cyto-
toxic effector function. This state is stabilised by chromatin remodelling, aberrant DNA methyla-
tion, nucleosome repositioning, histone post-translational modifications, and enhancer-landscape
alterations, rendering exhausted T cells resistant to canonical immune-checkpoint blockade.
High-resolution, multimodal spectroscopic technologies—including Raman scattering, Fourier-
transform infrared (FTIR) spectroscopy, mass-spectrometry imaging (MSI), and surface-enhanced
Raman spectroscopy (SERS)—have emerged as label-free, non-destructive, chemically sensitive
tools capable of decoding the molecular and epigenomic architecture of exhausted T cells. These
modalities afford spatiotemporal resolutionof biomolecular alterations, capturing epigenetic asym-
metries, metabolic flux, redox imbalance, lipidomic shifts, and nucleic-acid signatures that govern
immune-cell fate within the GBM milieu. We hypothesise that synergistic integration of these ad-
vanced spectroscopic approacheswith single-cell epigenomic and transcriptomic profilingwill un-
cover exhaustion-specific molecular fingerprints, enable precise immune-subset stratification, and
inform thedevelopment of targeted immunotherapies. This convergenceof systems-level analytics
withmolecular interrogation could establish a transformative, non-invasive framework for immune
monitoring and chromatin-directed reprogramming aimed at restoring T-cell stemness and rein-
vigorating durable anti-tumour immunity. By delineating spectroscopic correlates of epigenetic
remodelling and immunometabolic dysfunction, this strategy may transcend current therapeutic
limitations and facilitate biomarker-driven, mechanism-informed immunotherapy for GBM.
Key words: Glioblastoma (GBM), T Cell Exhaustion, Epigenetic Remodeling, Spectroscopic
Immune Profiling, Immune Checkpoint Resistance, Precision Immunotherapy, Non-Invasive
Biomarkers

INTRODUCTION
Glioblastoma (GBM) is the most aggressive pri-

mary malignancy of the central nervous system,

with a median overall survival of only 14–16 months

despite maximal surgical resection, radiotherapy,

and temozolomide chemotherapy1. Its lethality

largely derives from an immunosuppressive tu-

mour microenvironment (TME) that disrupts im-

mune surveillance and enables tumour immune

evasion. GBM mediates suppression by down-

regulating MHC molecules, secreting inhibitory cy-

tokines (e.g., TGF-β, IL-10), reprogramming cellular

metabolism, expressing checkpoint ligands (PD-L1,

Galectin-9), and inducing T-cell exhaustion (Tex)2, 3.

These barriers largely account for the limited clini-

cal efficacy of immune-checkpoint inhibitors (ICIs)
in GBM trials 4.
Tex is defined by a progressive loss of effector func-
tion under chronic antigenic stimulation. Exhausted
T cells display reduced production of IL-2, IFN-γ, and
TNF-α, poor proliferative capacity, metabolic dys-
regulation, and sustained expression of inhibitory
receptors such as PD-1, TIM-3, LAG-3, CTLA-4, and
TIGIT 5, 6. Although early exhaustion can be par-
tially reversed by checkpoint blockade, prolonged
stimulation drives an epigenetically fixed terminal
state that is refractory to reinvigoration7.
This terminal phenotype is orchestrated by exten-
sive epigenetic remodelling—changes in chromatin
accessibility, DNA methylation, and histone mod-
ifications that occur without altering the DNA se-
quence 8. Tex cells within GBM possess a unique
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various combinations of “glioblastoma,” “T-cell ex-
haustion,” “epigenetics,” “immunotherapy,” “spec-
troscopy,” and “immune checkpoint inhibitors.” Ad-
ditional pertinent articles were identified by man-
ually screening the reference lists of seminal stud-
ies and recent reviews. Articles were selected on the
basis of relevance, novelty, and scientific impact; a
formal systematic review or meta-analysis protocol
was not employed.

THE IMMUNOLOGICAL AND
EPIGENETIC LANDSCAPE OF
GLIOBLASTOMA
T-Cell Dysfunction and Exhaustion in
GBM
Glioblastoma (GBM) establishes a profoundly im-
munosuppressive tumor microenvironment (TME)
that blunts cytotoxic immunity, primarily through
T-cell dysfunction. Tumor-infiltrating lymphocytes
(TILs) are scarce, undergo limited expansion, pro-
duce few cytokines, and are frequently confined
to perivascular niches rather than infiltrating tu-
mor cores 18, 19. Single-cell RNA sequencing and T-
cell receptor (TCR) repertoire analyses confirm that
the majority of CD8+ TILs acquire a terminally ex-
hausted phenotype, characterized by high expres-
sion of PD-1 (PDCD1), TIM-3 (HAVCR2), and LAG-
3 (LAG3) 20. These co-inhibitory receptors are sus-
tained by chronic antigen stimulation within the
antigen-rich yet immunologically inert GBM mi-
lieu 21. Exhaustion is further stabilized by transcrip-
tional regulators such as TOX and the NR4A fam-
ily (NR4A1/2/3). TOX functions as a master epige-
netic organizer, remodeling chromatin to lock dys-
functional transcriptional programs while repress-
ing effector signatures 22, 23. NR4A factors likewise
impose tolerogenic states and directly suppress IL-2
and IFN-γ production 24. In concert with checkpoint
signaling, these factors constrain metabolic plastic-
ity. The hypoxic and nutrient-poor GBM TME exac-
erbates dysfunction by depleting ATP, elevating re-
active oxygen species (ROS) and limiting mitochon-
drial biogenesis 25. Spatial profiling indicates that
exhaustion ismaximal at the tumormargin, whereas
the core is almost devoid of TILs 26, underscoring
both focal immune suppression and an epigeneti-
cally fixed exhausted state refractory to reversal.

Epigenetic Fixation of Exhaustion
A major barrier to effective GBM immunotherapy is
the epigenetic fixation of T-cell exhaustion, whereby
dysfunctional programs become durably imprinted

chromatin landscape marked by effector-gene re-
pression and up-regulation of transcription factors 
such as TOX, NR4A, and EOMES9. Single-cell 
ATAC-seq and ChIP-seq have identified exhaustion-
specific enhancers and super-enhancers, underscor-
ing the durability of this programme10. However, 
studying these dynamics in patients remains chal-
lenging owing to the absence of real-time, non-
invasive tools capable of interrogating epigenetic 
states in situ.
Advanced spectroscopic technologies—including 
Raman spectroscopy, Fourier-transform infrared 
(FTIR) spectroscopy, and mass spectrometry—can 
meet this need 11. These label-free, non-destructive 
modalities exploit intrinsic vibrational or mass 
signatures to yield spatially resolved biochemi-
cal profiles of nucleic acids, proteins, lipids, and 
metabolites, all of which are altered during Tex12, 13. 
Raman microspectroscopy, for instance, can dif-
ferentiate naïve, activated, and exhausted T cells 
on the basis of vibrational fingerprints associated 
with DNA methylation, histone acetylation, and 
metabolic reprogramming 14, while FTIR spec-
troscopy detects spectral biomarkers of epigenetic 
and transcriptional states 15.
Integrating these spectroscopic approaches with 
single-cell sequencing and machine-learning algo-
rithms could define exhaustion-specific signatures, 
enabling immune monitoring and early detection of 
therapeutic resistance. Such convergence is partic-
ularly relevant in GBM, where intratumoral hetero-
geneity, the blood–brain barrier, and immune exclu-
sion limit tissue-based assessments16. Correlating 
spectroscopic profiles with transcriptional and epi-
genetic data may also guide the use of epigenetic 
adjuvants (e.g., DNMT or HDAC inhibitors) to reset 
Tex chromatin landscapes and enhance ICI respon-
siveness 17.
This review therefore proposes an integrative frame-
work that leverages spectroscopy to interrogate epi-
genetic remodelling in T-cell exhaustion, summa-
rizes key mechanistic insights, evaluates spectro-
scopic modalities, and discusses their translational 
applications in immune monitoring, biomarker dis-
covery, and therapeutic stratification for GBM.

LITERATURE SEARCH AND 
SELECTION
References for this narrative review were obtained 
through comprehensive searches of PubMed, Web 
of Science, and Scopus, encompassing publications 
from 2018 to 2025. Search terms consisted of
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and refractory to re-invigoration. Exhausted T cells
acquire not only altered transcriptional states but
also a distinct epigenomic identity that irrevoca-
bly separates them from memory and effector lin-
eages 27. DNAmethylation is central to this process.
Whole-genome bisulfite sequencing and chromatin
accessibility profiling reveal hypermethylation of
loci governing IL-2 signaling, cytolytic effectors (e.g.,
GZMB, PRF1), and co-stimulatory receptors such as
CD28 28. DNMT3A serves as a critical mediator; con-
ditional deletion of Dnmt3a in CD8+ T cells partially
restores effector function and increases responsive-
ness to PD-1 blockade in pre-clinical GBM mod-
els 29. Raman micro-spectroscopy further demon-
strates methylation-driven chromatin compaction
within exhausted nuclei.
Histone modifications consolidate repression.
Trimethylation of histone H3 lysine 27 (H3K27me3),
catalyzed by EZH2 within the polycomb repressive
complex 2 (PRC2), is enriched at effector cytokine
and receptor loci 30. Chromatin immunoprecipi-
tation sequencing (ChIP-seq) confirms pervasive
H3K27me3-marked silencing in exhausted TILs
from human GBM 31. Pharmacological EZH2
inhibition synergizes with PD-1 blockade, restoring
IFN-γ production and proliferation in glioma mod-
els 32. Single-cell ATAC-seq and CUT&Tag provide
high-resolution maps of this chromatin landscape.
Patient-derived exhausted T cells exhibit loss of ac-
cessible enhancers governing effector and memory
programs 33. Exhaustion-specific super-enhancers
regulated by TOX display H3K4me1 enrichment
coupled with H3K27ac depletion, indicative of
functional silencing34. These chromatin alterations
persist ex vivo, emphasizing durable epigenetic en-
trapment. Collectively, DNA methylation, histone
modifications, and chromatin compaction entrench
a fate-committed exhaustion program. Even under
checkpoint blockade, exhausted T cells rarely
reacquire effector competence. Consequently, of
checkpoint inhibitors (e.g., HDAC, BET, or EZH2
inhibitors) are under investigation to restore T-cell
plasticity and overcome GBM-mediated immune
resistance35, 36.

SPECTROSCOPY AS AWINDOW
INTO IMMUNE AND
EPIGENETIC STATES
Traditionally, investigations of immune-cell dy-
namics and chromatin remodeling in cancer and
autoimmunity have depended on invasive, label-
based approaches. Recent advances in vibrational

and resonance spectroscopies now afford label-
free interrogation of the biochemical and biophys-
ical hallmarks of immune activation, epigenetic re-
programming, and cellular heterogeneity. These
non-destructive modalities—including Raman and
Fourier-transform infrared (FTIR) spectroscopy, hy-
perspectral imaging, and nuclear magnetic reso-
nance (NMR)—provide a multimodal platform for
elucidating the molecular mechanisms underlying
immune dysregulation and epigenetic control in dis-
eases such as glioblastoma, melanoma, and systemic
lupus erythematosus (SLE)37, 38 (Figure 3).

FUNDAMENTAL OF
SPECTROSCOPIC TECHNIQUES
Spectroscopic methods exploit the interaction of
electromagnetic radiation with matter to yield
highly specific molecular fingerprints. Within im-
munology and epigenetics, five principal modalities
offer high-resolution, real-time analysis.

Raman spectroscopy
Raman spectroscopy relies on the inelastic scatter-
ing of monochromatic light (typically a laser) to gen-
erate vibrational energy profiles that are character-
istic of molecular bonds. Its capacity to differenti-
ate nucleic-acid structures, lipid content and pro-
tein conformations without exogenous stains makes
it invaluable for monitoring epigenetic states39. Ra-
man signals are particularly sensitive to histone
modifications and DNA methylation, associated
with spectral shifts in phosphate and acetyl func-
tional groups 40. Although conventional Raman mi-
croscopy is diffraction-limited to sub-micron resolu-
tion, advanced approaches such as tip-enhanced Ra-
man spectroscopy (TERS) push sensitivity into the
nanoscale. In routine practice, conventional Raman
requires approximately 103–104 leukocytes for re-
producible spectra, with detection limits in the 10-6–
10-8 M range. However, signal quality is markedly
compromised in FFPE brain tissue because of strong
paraffin autofluorescence.

FTIR spectroscopy
Fourier-transform infrared (FTIR) spectroscopy
probing molecular vibrations in the mid-infrared re-
gion is highly sensitive to chemical modifications in
chromatin, including acetylation and methylation,
as well as to global metabolic shifts in lipid and
carbohydrate pools 41. FTIR also enables mapping
of epigenetic compartmentalization within the nu-
cleus through differential absorbance42. Typically,
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Figure 1: HeatmapDepicting T Cell ExhaustionMarkers and Epigenetic Regulatory Profiles in Glioblastoma (GBM)
Samples (A) Hierarchical clustering of 20 GBM samples based on expression of T cell exhaustion markers (PD-1,
LAG-3, TIM-3, TOX) and epigenetic regulators (H3K27me3, NR4A, EZH2, DNMT3A, ATAC-closed chromatin state).
(B) The same heatmap with color-coded annotation bars indicating relative exhaustion states (red: high; orange:
moderate; green: low) based on cumulative marker expression. CUT&Tag-based chromatin accessibility and his-
tone methylation patterns highlight epigenetic fixation associated with T cell dysfunction. Sample clustering re-
veals patient-specific exhaustion-epigenetic signatures, suggesting that deeper exhaustion correlateswith repres-
sive chromatin marks (e.g., H3K27me3, ATAC-closed) and TOX/EZH2 enrichment. [Illustration created in Power-
Point] Note: This figure is illustrative and uses simulated/mock data for conceptual purposes only; it does not
represent patient-level or trial data. For definitions of abbreviations (e.g., CUT&Tag, ATAC-seq, EZH2), please refer
to the ’Abbreviations’ section.

Hyperspectral imaging (HSI)
Hyperspectral imaging acquires a complete spec-
trum at every pixel, enabling spatially resolved bio-
chemical characterization of tissues and cellular mi-
croenvironments. In immunology, HSI has been
instrumental in profiling lymphoid-organ architec-
ture, T-cell trafficking and immune-synapse forma-
tion with high spatial fidelity46. Despite its excel-
lent resolution, HSI generally requires fresh or cry-
opreserved specimens; compatibility with FFPE ma-
terial remains limited.
Collectively, these spectroscopic platforms provide a
holistic view of immune–epigenetic interfaces, per-
mitting detection of static and dynamic biomolecu-
lar features in real time and, inmany cases, at single-
cell resolution.

APPLICATION IN IMMUNE
MONITORING
T-cell states—including activation, anergy, exhaus-
tion, and memory—are governed by transcriptional
and epigenetic heterogeneity. Spectroscopic tech-
niques enable label-free, non-destructive profiling
of these states. Raman cytometry discriminates
naïve from activated T cells on the basis of lipid, nu-
cleic acid, and metabolite spectral signatures; shifts

about 105 cells are required to achieve an adequate 
signal-to-noise ratio; nevertheless, the method is 
fully compatible with FFPE sections, enhancing its 
translational and retrospective value.

UV–Vis absorption spectroscopy
Ultraviolet–visible (UV–Vis) absorption spec-
troscopy affords r apid q uantification o f nucleic 
acids and proteins based on absorbance maxima 
at 260 nm and 280 nm, respectively. Although 
less specific than vibrational techniques, it is a 
useful preliminary or validation tool for assessing 
cell-state transitions and chromatin compaction43.

Nuclear magnetic resonance (NMR 
spectroscopy
NMR spectroscopy provides atomic-level structural 
and dynamic information on biomolecules, partic-
ularly for elucidating allosteric states of transcrip-
tion factors, post-translational histone modifica-
tions and TCR–pMHC interactions44. The advent of 
hyperpolarized NMR has increased sensitivity, per-
mitting real-time monitoring of metabolic interme-
diates and epigenetic enzyme activities45.
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Figure 2: Multi-Dimensional Profiling of T Cell Exhaustion in Glioblastoma: Frequency, Subgroup Respon-
siveness, and Epigenetic Remodelling. A: Expression Frequencies of Canonical ExhaustionMarkers in GBM
Tumor-Infiltrating Lymphocytes (TILs). This bar graph illustrates the relative abundance of T cell exhaustion
markers PD-1, TIM-3, LAG-3, TOX, and NR4A across four GBM subtypes: primary GBM, recurrent GBM, high TIL
density, and low TIL density tumors. The blue-toned colour gradient distinguishes each cohort. Notably, high
TIL tumors exhibit markedly increased expression of all exhaustion markers, with statistically inferred differences
(Δ%) highlighted between high and low TIL groups using top-line comparisons annotated with simulated con-
fidence intervals. These trends underscore the progressive immunosuppressive milieu and potential predictive
value of exhaustion signatures in stratifying immunotherapy responsiveness. B: Subgroup-Specific Responses
to Combined Epigenetic and Checkpoint Blockade Therapies- This forest plot presents a simulated subgroup
analysis comparing the percentage improvement in functional T cell exhaustion reversal upon treatmentwith epi-
genetic reprogramming agents (e.g., HDAC inhibitors) in combination with immune checkpoint inhibitors, versus
ICImonotherapy. Subgroups analysed include patient demographics (age, sex), molecular profiles (MGMTmethy-
lation, IDH1mutation), and immune contexture (TIL density). Effect sizes are reported with 95% confidence inter-
vals, revealing pronounced benefit in MGMT-methylated, IDH1-mutant, and highly inflamed tumors, indicative of
a potential for precision stratification of epigenetic-immune combination therapies. C: Epigenetic Reprogram-
ming at Exhaustion-Associated Loci in T Cells from GBM- This panel shows log2 fold-changes in chromatin
accessibility derived from simulated ATAC-seq/Chipset data at regulatory regions associated with T cell exhaus-
tion, including TOX enhancers, PDCD1 promoters, and loci of LAG3, NR4A1, and TIGIT. Enhanced accessibility
in exhausted T cells or post-treatment reprogrammed cells suggests a mechanistic basis for transcriptional re-
awakening and the potential for epigenetic decryption of exhaustion states. The confidence intervals underscore
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biologically meaningful remodelling of the chromatin landscape upon intervention. [Illustration created in Pow-
erPoint]. Note: This figure is illustrative and uses simulated/mock data for conceptual purposes only; it does not

represent patient-level or trial data. For definitions of abbreviations (e.g., CUT&Tag, ATAC-seq, EZH2), please refer

to the ’Abbreviations’ section.

Figure 3: Spectroscopic andEpigenetic Signatures in TCell Exhaustion: Implications for Therapeutic Rever-
sal. A: Immune-Epigenetic Biomarker ExpressionAcross Therapeutic Strategies- This heatmapdepicts theZ-scores
of key immune-epigenetic markers (rows) across four therapeutic modalities (columns): HDAC inhibitors (HDACi),
EZH2 inhibitors (EZH2i), BET inhibitors (BETi), anti-PD-1 checkpoint blockade- CD39, an exhaustion-associated
ectonucleotidase, is most upregulated with anti-PD-1 therapy (+1.5). TOX, a master regulator of exhaustion,
shows highest upregulation with BETi (+1.6), suggesting chromatin remodelling can paradoxically reinforce ex-
haustion programs. H3K27me3, a repressive histone mark, is upregulated with EZH2i (+0.54), consistent with
epigenetic plasticity modulation. CD8+ T cell levels are significantly suppressed under EZH2i and BETi treat-
ments (−1.9, −1.7 respectively), possibly indicating impaired cytotoxic re-expansion. IFN-γ, a functional cytokine,
is notably downregulated with HDACi (−1.0) and anti-PD-1 (−1.4), reflecting incomplete reinvigoration. B: FTIR
Spectroscopy Reveals Exhaustion-Associated Biophysical Changes- This box plot presents FTIR amide I band in-
tensity (indicative of protein secondary structure alterations) across T cell exhaustion states: Non-exhausted T
cells exhibit the lowest intensity ( 0.75), suggesting minimal structural rearrangement. Early exhausted T cells
show intermediate intensity ( 1.3), reflectingpartialmolecular reorganization. Terminally exhaustedT cells demon-
strate highest intensity ( 1.8), pointing to profound biochemical remodelling, possibly due to altered chromatin
or mitochondrial stress responses. [Illustration created in PowerPoint]. Note: This figure is illustrative and uses
simulated/mock data for conceptual purposes only; it does not represent patient-level or trial data. For definitions
of abbreviations (e.g., CUT&Tag, ATAC-seq, EZH2), please refer to the ’Abbreviations’ section.

distinguishes tumor-infiltrating lymphocytes from
peripheral T cells, revealing lipid alterations and
nucleic-acid condensation associated with T-cell ex-
haustion 54. The 1,440-cm-1 CH2 bending mode,
which reflects membrane fluidity, has emerged
as a potential non-invasive biomarker of immuno-
suppression 55. In melanoma, FTIR spectroscopy
identifies checkpoint-inhibitor resistance by detect-
ing infrared absorbance shifts linked to histone
methylation and effector-gene silencing preceding
clinical relapse56. NMR metabolomics has de-
fined autoimmune signatures, with systemic lupus
erythematosus characterised by disrupted choline
metabolism and an imbalance in methyl donors57,
whereas rheumatoid arthritis T cells demonstrate
FTIR-detectable protein misfolding and lipid perox-
idation 58. Hyperspectral imaging of colorectal can-

within the 785–1,600 cm-1 region are indicative of 
chromatin accessibility47, 48. FTIR spectroscopy de-
tects exhaustion-associated reductions in the amide 
I/II bands and attenuations o f phosphorylation-
related peaks at 1,240 cm-1 49, 50. Hyperspectral 
microscopy monitors T-cell subsets in situ by as-
sessing lipid-to-nucleic-acid ratios51, whereas NMR 
spectroscopy distinguishes glycolytic effector cells 
from oxidative memory subsets, thereby correlating 
metabolic profiles with histone modifications52, 53.

CASE STUDIES IN CANCER AND
AUTOIMMUNITY
Spectroscopic approaches have yielded critical in-
sights into immune dysfunction and epigenetic 
remodeling in cancer and autoimmune diseases. 
In glioblastoma, Raman spectroscopy successfully
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cer distinguishes lymphoid from myeloid infiltrates,
correlating with patient prognosis and therapeutic
response 59. The integration of Raman and FTIR
datasets with machine learning achieves >90 % ac-
curacy in predicting immune states and treatment
outcomes 60.

LINKING EPIGENETIC
REMODELING AND
SPECTROSCOPIC SIGNATURES
IN GBM T CELLS
Glioblastoma (GBM) is a highly immunosuppres-
sive malignancy in which immune cell dysfunc-
tion and epigenetic reprogramming converge to in-
duce T-cell exhaustion. Spectroscopic modalities,
particularly Raman and Fourier-transform infrared
(FTIR) spectroscopy, have emerged as promising,
non-destructive approaches for decoding these bio-
chemical and epigenetic alterations in situ. Inte-
grating immune epigenetics with label-free spec-
troscopic profiling therefore provides a compelling
strategy to delineate T-cell states in GBM and may
permit real-time monitoring of responses to im-
munotherapy.

Epigenetic Remodelling in Exhausted
GBM T Cells
T-cell exhaustion in the glioblastoma microenviron-
ment is not merely a transient functional state but
reflects a profound and stable epigenetic remod-
elling program. Chromatin accessibility assays in
exhausted T cells have revealed global hypoacety-
lation of enhancers and loss of accessibility at ef-
fector loci such as IFNG, PRF1 and TNF, alongside
increased accessibility at loci encoding inhibitory re-
ceptors such as PDCD1, CTLA4, LAG3 and HAVCR2
(TIM-3) 61. This shift is tightly regulated by a co-
hort of epigenetic modifiers, including DNMT3A,
EZH2 and HDACs, that enforce a repressive chro-
matin landscape, locking T cells into a dysfunc-
tional state (Table 1) 62. Histone acetylation levels—
particularly at H3K27ac and H3K9ac—are decreased
in exhausted T cells, leading to chromatin conden-
sation and reduced transcriptional activity. Con-
versely, increased DNAmethylation at key immune-
effector genes contributes to their persistent silenc-
ing despite antigen stimulation63. These chromatin
alterations are not readily reversible by immune-
checkpoint blockade alone, highlighting the need
for integrated therapies capable of remodelling the
epigenetic architecture of T cells in GBM.

Hypothetical Spectral Models of
Epigenetic States
Spectroscopic modalities such as Raman and FTIR
are exquisitely sensitive to the biochemical compo-
sition and structural state of chromatin. Raman
spectroscopy detects vibrationalmodes ofmolecular
bonds and can differentiate between open (euchro-
matic) and condensed (heterochromatic) states on
the basis of peak shifts and intensities in phosphate-
backbone (PO2

-) and nucleic-acid ring-breathing
modes 69. For instance, chromatin decompaction in-
duced by histone acetylation is associated with a
relative increase in nucleic-acid-associated Raman
peaks (785 cm-1, 1,090 cm-1), whereas condensed
chromatin states exhibit a dominance of protein and
lipid signatures70. FTIR spectroscopy complements
Raman analysis by measuring absorbance in the fin-
gerprint region (1,000–1,800 cm-1) corresponding to
nucleic acids, amide bonds and histone modifica-
tions. Notably, acetylation of lysine residues results
in shifts within the Amide I and II bands (1,650 and
1,550 cm-1, respectively), which can be tracked as
surrogate markers of histone acetylation levels71.
These spectral alterations support a hypothetical
model in which T-cell exhaustion in GBM correlates
with a decreased nucleic-acid-to-protein ratio and
altered lipid ordering, reflecting underlying chro-
matin condensation and reduced transcriptional ac-
tivity (Table 2).

Biochemical Spectroscopic Signatures of
Exhausted T Cells
Exhausted T cells exhibit distinct biochemical phe-
notypes characterized by altered metabolic activity,
increased reactive oxygen species (ROS), lipid perox-
idation and changes in membrane composition, all
of which can be detected spectroscopically77. Ra-
man mapping of GBM-infiltrating T cells has re-
vealed decreased lipid unsaturation (C=C stretching
at 1,655 cm-1), altered protein secondary structure
(amide III) and reduced nucleic-acid content, find-
ings consistent with a senescent or metabolically
suppressed phenotype 78. Spectral markers such as
the 1,445 cm-1 CH2 scissoring band (indicative of
membrane saturation) and the 1,080 cm-1 phosphate
stretch (DNA/RNA) provide quantitative indicators
of the exhaustion state. These observations sug-
gest that Raman and FTIR spectroscopy can detect
functionally relevant biochemical changes in T cells
that are not apparent from surface-marker profiling
alone.
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Table 1: This table summarizes the key epigenetic regulators involved in establishing andmaintaining the
exhausted phenotype of T cells in the GBMmicroenvironment. Their modulation has shown promise in
combination with checkpoint blockade to reinvigorate T cell function 64, 65, 66, 67, 68

Epigenetic
Modifier

Molecular
Function

Effect on T Cell State in GBM Mechanistic Outcome

DNMT3A DNA methyl-
transferase

Silences effector genes (e.g., IFNG,
PRF1)

Promotes fixed exhaustion
phenotype

EZH2 (PRC2
complex)

H3K27
methylation

Represses memory gene loci Inhibits T cell reprogramming

HDAC1/2 Histone
deacetylases

Reduces histone acetylation at
effector genes

Chromatin compaction and
transcriptional repression

TET2 DNA
demethylase

Promotes DNA demethylation at
cytokine loci

Partially restores T cell function

BRD4 Histone
acetylation
reader

Supports transcriptional
elongation of effector genes

Correlates with memory-like
phenotype retention

Abbreviations: DNMT3A, DNA Methyltransferase 3A; EZH2, Enhancer of Zeste Homolog 2; PRC2, Polycomb Re-
pressive Complex 2; HDAC, Histone Deacetylase; TET2, Ten-Eleven Translocation 2; BRD4, Bromodomain-containing
protein 4. For a comprehensive list, see the ’Abbreviations’ section.

Table 2: Spectroscopic biomarkers provide a non-invasive window into the biochemical and epigenetic
landscape of exhausted T cells in GBM. Raman and FTIR spectra reveal chromatin state, metabolic shifts, and
proteinmodifications, which correlate with immune dysfunction 72, 73, 74, 75, 76

Spectro-
scopic

Technique

Key Spectral Markers Biological
Target

Functional Interpretation

Raman
Spectroscopy

785 cm-1 (DNA ring),
1,080 cm-1 (PO2

-), 1,655
cm-1 (lipid C=C)

Chromatin,
nucleic acids,

lipids

Reduced nucleic acid intensity →
transcriptional inactivity; lipid disordering →

altered metabolism

FTIR
Spectroscopy

1,650 cm-1 (Amide I),
1,550 cm-1 (Amide II),
1,080 cm-1 (PO4

-)

Histones, protein
backbone, DNA

Altered Amide I/II ratio reflects histone
acetylation levels; phosphodiesterase shifts

→ chromatin compaction

Hyperspec-
tral Imaging

Composite shifts across
1,000–1,800 cm-1

Whole-cell
biochemical
signature

Classifies immune cell functional states;
identifies spatial heterogeneity in TIL

exhaustion

Surface-
enhanced
Raman
(SERS)

Enhanced signals at
nucleic acid + protein

peaks

Signal
amplification in
CSF-derived T

cells

Enables detection of exhausted T cells in
liquid biopsy platforms

Note: cm-1, wavenumber (unit in Raman/FTIR spectroscopy); PO2
-, phosphate group; C=C, carbon-carbon double bond;

CSF, Cerebrospinal Fluid. For other abbreviations, see the ’Abbreviations’ section.

reduced transcriptional activity and exhaustion80.

Moreover, biopsy-derived T cells from the GBM core

and peritumoral regions display distinct FTIR and

Raman fingerprints. These spatially resolved sig-

natures correspond to differential epigenetic and

metabolic states sculpted by the local tumour mi-

croenvironment, underscoring the potential of spec-

troscopic fingerprinting as both a diagnostic and

stratification tool 81.

CSF- and Biopsy-Derived Spectral 
Fingerprinting
Cerebrospinal fluid (CSF) and GBM tumour biopsies 
represent minimally invasive sources for immune 
profiling. Recent advances in hyperspectral Raman 
microscopy and confocal FTIR mapping have en-
abled single-cell-resolution analysis of immune pop-
ulations directly from clinical samples79. For in-
stance, T cells isolated from GBM CSF exhibit sig-
nificant down-regulation of nucleic-acid spectral re-
gions compared with peripheral T cells, reflecting
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Integration with Single-Cell Omics
Combining label-free spectroscopy with single-cell
omics approaches such as scRNA-seq and scATAC-
seq yields a multidimensional view of T-cell exhaus-
tion. For example, single-cell Raman spectroscopy
coupled with transcriptomic profiling (Raman-seq)
permits correlative mapping of spectral features
with gene expression and chromatin accessibility at
the individual-cell level82. Integration with scATAC-
seq further reveals spectral correlates of open ver-
sus closed chromatin, particularly at exhaustion-
specific loci. This integrative framework has al-
ready been applied in pre-clinical glioma mod-
els to identify subpopulations of T cells that re-
tain effector potential despite chronic stimulation83.
By training machine-learning algorithms on multi-
modal datasets (Raman + scRNA-seq), investigators
can classify T cells into functional states with high
accuracy and predict responsiveness to immune-
checkpoint inhibitors or epigenetic modulators.

THERAPEUTIC IMPLICATIONS
AND PATHWAYS TO
REINVIGORATION
The immunosuppressive microenvironment in
glioblastoma (GBM) constitutes a formidable bar-
rier to immune checkpoint inhibitors (ICIs), because
stable T-cell exhaustion programs are perpetuated
by epigenetic, metabolic, and transcriptional
rewiring. Reversal of these dysfunctional states
will require mechanism-driven, precision-guided
therapeutic interventions. Accordingly, integrating
epigenetic reprogramming, spectroscopy-based
monitoring and combinatorial immunotherapeu-
tic strategies provides a rational framework for
reinvigorating anti-tumor immunity in GBM.

Epigenetic Reprogramming to Reverse
T-Cell Exhaustion
T-cell exhaustion in GBM is stabilized by epigenetic
programs that repress effector gene loci and sus-
tain inhibitory receptor expression. Reversible ex-
haustion retains partial chromatin accessibility and
remains partially responsive to ICIs, whereas fixed
exhaustion is characterized by near-complete tran-
scriptional silencing and resistance to checkpoint
blockade 84. Histone deacetylase (HDAC) inhibitors
such as vorinostat and panobinostat can restore
IFN-γ, granzyme B and IL-2 expression, thereby
synergizing with PD-1 blockade85. Bromodomain
and extra-terminal (BET) inhibitors (e.g., JQ1) inter-
rupt TOX/NR4A-driven dysfunction86, whereas en-
hancer of zeste homolog 2 (EZH2) inhibitors (e.g.,

tazemetostat) de-repress Tcf7 and Runx3, promot-
ing memory-like states87. Nonetheless, excessive
transcriptional de-repression may precipitate T-cell
apoptosis 88. Single-cell ATAC-seq analyses confirm
that fixed exhaustion is associated with rigid chro-
matin landscapes, emphasizing the relevance of epi-
genetic targeting89.

Spectroscopy-Guided Monitoring of
Therapy
Traditional immunomonitoring modalities such as
flow cytometry and bulk transcriptomics require
cellular labeling and sample manipulation, whereas
label-free spectroscopic platforms—including Ra-
man, Fourier-transform infrared (FTIR) and hyper-
spectral imaging—provide real-time, in situ molec-
ular readouts. In GBM-infiltrating T-cells, these
modalities can detect chromatin condensation, lipid
peroxidation and protein conformational changes
associated with exhaustion or reinvigoration90. Di-
agnostic spectral signatures include the 785 cm-1

DNA ring vibration, the 1,080 cm-1 phosphodiester
stretch and the 1,650 cm-1 amide-I band, all reflec-
tive of chromatin and protein remodeling. Raman-
derived heatmaps illustrate intratumoral hetero-
geneity, with reinvigorated T-cells localizing to tu-
mor margins and exhausted subsets enriched within
necrotic cores91, 92. Ongoing clinical trials are incor-
porating spectroscopy coupled with artificial intelli-
gence to predict therapeutic outcomes93.

Combinatorial Therapeutic Approaches
Given the multifactorial drivers of T-cell exhaus-
tion in GBM, monotherapy with either ICIs or epi-
genetic agents is frequently inadequate. Current
rational strategies therefore prioritize combinato-
rial regimens that integrate ICIs, epigenetic mod-
ulators and metabolic adjuvants, guided by spec-
troscopic profiling. In preclinical glioma models,
anti-PD-1 therapy combined with HDAC or EZH2
inhibitors augments intratumoral T-cell prolifera-
tion, cytokine secretion and memory-like differen-
tiation (Figure 4). This synergy results from tran-
scriptional reactivation of effector genes together
with relief of chromatin-mediated immunosuppres-
sion 94. Incorporation of metabolic adjuvants—such
as mTOR modulators, NAD+ precursors (e.g., nicoti-
namide riboside) or fatty-acid-oxidation inducers—
further mitigates metabolic paralysis and restores
mitochondrial fitness95. Spectroscopy can de-
tect these functional shifts through alterations in
lipid saturation indices, NADH/FAD fluorescence
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Figure 4: IntegrativeAssessment of Immunoepigenetics Therapies and Spectroscopic Biomarkers inGlioblastoma
(GBM) (A) Simulated Kaplan-Meier survival curves for GBM patients under different immunotherapeutic regimens:
standard of care (red, dashed), anti-PD-1 monotherapy (blue), and anti-PD-1 combined with an epigenetic mod-
ulator (green). The combinatorial strategy demonstrates improved survival probability over a 24-month period,
suggesting potential synergy between immune checkpoint inhibition and epigenetic reprogramming. (B) Radar
plot depicting the relative sensitivity (scale 1–5) of four spectroscopic modalities Raman (yellow), FTIR (orange),
SERS (red), and NMR (pink) in detecting key immunometabolism and epigenetic hallmarks of T cell exhaustion in
GBM. Parameters include histone modifications, chromatin condensation, lipid metabolism, cytokine shifts, and
broader epigenetic states. SERS and NMR demonstrate superior resolution across multiple axes, supporting their
potential utility in immune profiling and treatment monitoring. [Illustration created in PowerPoint]. Note: This
figure is illustrative anduses simulated/mockdata for conceptual purposesonly; it doesnot representpatient-level
or trial data. For definitions of abbreviations (e.g., CUT&Tag, ATAC-seq, EZH2), please refer to the ’Abbreviations’
section.

dysfunction arises from chronic antigen stimula-
tion, metabolic constraints, and tumor-induced epi-
genetic fixation. Although immune-checkpoint in-
hibitors (ICIs) have transformed outcomes in sev-
eral malignancies, their limited efficacy in GBM
is attributable to stable chromatin configurations
that constrain reinvigoration98. Exhausted CD8+

T cells exhibit DNA methylation at effector loci
and open chromatin at inhibitory genes such as
Pdcd1, Lag3, and Tox—epigenetic signatures that
persist despite PD-1 blockade99. Repressive histone
modifications, particularly H3K27me3 enrichment
mediated by EZH2, further reinforce gene silenc-
ing and resemble senescence-like differentiation100.
Histone-deacetylase (HDAC) and bromodomain and
extra-terminal (BET) inhibitors can partially reverse
these states, but predicting clinical responsiveness
remains challenging101.
Spectroscopic methodologies offer non-invasive
strategies to interrogate such epigenetic programs.
Raman spectroscopy, Fourier-transform infrared
(FTIR) spectroscopy, and surface-enhanced Raman
scattering (SERS) can identify vibrational finger-
prints of nucleic acids, lipids, and histones with
high sensitivity 102. FTIR discriminates methylated
from unmethylated DNA 103, whereas SERS de-

and redox-sensitive spectral bands, thereby en-
abling real-time monitoring96. Early-phase clini-
cal trials evaluating triplet combinations (anti-PD-
1 + HDAC inhibitor + metabolic modulator) have 
reported increased tumor-infiltrating lymphocyte 
density and partial restoration of TCR clonality, 
with spectroscopy embedded as a non-invasive end-
point 97 (Figure 4). Spectroscopy-derived biosig-
natures can also stratify exhaustion subtypes—for 
example, selecting BET inhibition for TOX-driven 
states or mTOR modulation for glycolytic dys-
function. Ultimately, spectroscopy-guided adaptive 
therapy, whereby spectral dynamics dictate treat-
ment adjustments, may minimize toxicity while 
maintaining immune surveillance. Collectively, epi-
genetic, metabolic and checkpoint-directed combi-
nations that are dynamically informed by spectral 
biomarkers represent a transformative frontier in 
GBM immunotherapy (Figure 4).

DISCUSSION
This synthesis underscores the potential of inte-
grating spectroscopic technologies with immuno-
epigenetic profiling to elucidate T-cell exhaustion 
in glioblastoma (GBM), a setting in which current 
immunotherapies remain largely ineffective. T-cell
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Figure 5: Flowchart illustration of Future Perspectives and Translational Roadmap [Illustration created in Pow-
erPoint].

tects histone acetylation associated with HDAC in-
hibition 104. Accordingly, these techniques could
produce real-time epigenetic maps that quantify
the severity of exhaustion. Combination therapies
that target EZH2, DNA methyltransferases (DN-
MTs), or BET proteins in conjunction with ICIs have
demonstrated T-cell reinvigoration in glioma mod-
els 105; however, their effectiveness depends on in-
tervention before terminal exhaustion becomes irre-
versible. Spectroscopy may therefore aid in defin-
ing this therapeutic window, particularly when in-
tegrated with nuclear magnetic resonance (NMR)-
based metabolic profiling106.

The immunosuppressive GBM microenvironment—
characterized by tumor-associated macrophage
(TAM) polarization, TGF-β signaling, and nutrient
competition—further entrenches exhaustion107.
Hyperspectral imaging delineates spatial immune
heterogeneity108, while FTIR links lipid perox-
idation and chromatin condensation to CD8+

dysfunction 109. Integrating spectroscopy with
multi-omics datasets and artificial-intelligence
classifiers, which achieve >90 % predictive accuracy
in other cancers 110, could enable precise, real-time

monitoring of T-cell reinvigoration and guide adap-
tive, patient-specific immunotherapy. Nevertheless, 
several in-vivo cranial-window Raman spectroscopy 
studies have failed to consistently detect leukocytes 
owing to pronounced autofluorescence and motion 
artifacts, highlighting the translational gap between 
bench-top sensitivity and clinical applicability.

FUTURE PERSPECTIVES AND
TRANSLATIONAL ROADMAP
The translation of spectroscopic immunoprobing 
from proof-of-concept to clinical practice requires 
methodological harmonization, computational in-
novation, and integrated translational pipelines 
(Figure 5). Despite encouraging studies, repro-
ducibility remains limited by variability in cali-
bration, acquisition, and preprocessing, as well 
as inter-patient heterogeneity in GBM. Standard-
ized spectral biomarker definitions and a curated 
multi-centre spectral atlas linking fingerprints to 
transcriptomic and epigenomic features are in-
dispensable 111, 112. Building on immune-scoring 
paradigms, a Spectral Exhaustion Index (SEI) could 
be developed, integrating vibrational markers of hi-
stone deacetylation ( 1450 cm-1), DNA methylation 
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ABBREVIATIONS
ATAC-seq: Assay for Transposase-Accessible Chro-
matin using sequencing; BET: Bromodomain and
Extra-Terminal domain; CNS: Central Nervous
System; CSF: Cerebrospinal Fluid; CUT&Tag:
Cleavage Under Targets and Tagmentation; ChIP-
seq: Chromatin Immunoprecipitation sequenc-
ing; DNMT: DNA Methyltransferase; ECAR:
Extracellular Acidification Rate; FTIR: Fourier-
Transform Infrared Spectroscopy; GBM: Glioblas-
toma Multiforme; HDAC: Histone Deacetylase;
HSI: Hyperspectral Imaging; ICI: Immune Check-
point Inhibitor; IFN-γ: Interferon-gamma; IL:
Interleukin; MSI: Mass Spectrometry Imaging;
NAD+/NADH:Nicotinamide Adenine Dinucleotide
(oxidized/reduced); NMR: Nuclear Magnetic Res-
onance; PD-1: Programmed Cell Death Protein
1; PRC2: Polycomb Repressive Complex 2; ROS:
Reactive Oxygen Species; SERS: Surface-Enhanced
Raman Spectroscopy; SEI: Spectral Exhaustion In-
dex; TAM: Tumor-Associated Macrophage; TCR: T
Cell Receptor; Tex: Exhausted T Cell; TIDE: Tumor
Immune Dysfunction and Exclusion; TIL: Tumor-
Infiltrating Lymphocyte; TME: Tumor Microenvi-
ronment; TNF-α: Tumor Necrosis Factor-alpha;
TOX: Thymocyte Selection-Associated High Mobil-
ity Group Box; scRNA-seq: Single-Cell RNA Se-
quencing
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( 1230–1280 cm-1), lipid peroxidation ( 1740 cm-1), 
and metabolic flux (NAD+/NADH ratios), thereby 
enabling dynamic tracking of exhaustion and ther-
apeutic responsiveness113. Validation in GBM 
organoid–T-cell co-cultures, followed by clinical de-
ployment, will be essential. AI-driven pipelines, 
particularly CNNs and VAEs, already classify im-
mune subsets with >90 % accuracy; however, future 
models must be interpretable and integrate multi-
omics layers, including ATAC-seq and single-cell 
transcriptomics 114, 115. Federated learning could 
accelerate cross-institutional validation while pre-
serving data privacy. Successful translation fur-
ther demands interdisciplinary collaboration across 
immunology, neurosurgery, spectroscopy, compu-
tational biology, and regulatory science. Incor-
porating spectral endpoints in trials and training 
“spectro-immunologists” will be pivotal116. Ulti-
mately, embedding standardized spectral indices 
within multimodal clinical workflows could reshape 
precision immunotherapy for GBM.

CONCLUSION
Glioblastoma (GBM) remains highly resistant to 
immunotherapy, primarily because of deeply en-
trenched, epigenetically fixed T-cell exhaustion. 
Conventional transcriptomic and proteomic meth-
ods offer only l imited r esolution o f t he molecular 
and functional heterogeneity that underpins this 
dysfunction. Label-free spectroscopic platforms—
including Raman, Fourier-transform infrared (FTIR) 
spectroscopy, surface-enhanced Raman scattering 
(SERS), and hyperspectral imaging—provide real-
time, in situ interrogation of biochemical and 
chromatin-associated signatures, thereby enabling 
generation of precise spectral fingerprints of exhaus-
tion. When integrated with artificial-intelligence-
driven analytics, spatial omics, and multimodal 
imaging, these technologies facilitate the develop-
ment of standardized metrics, such as a “spec-
tral exhaustion index,” to quantify immune sta-
tus, track therapy-induced reinvigoration, and pre-
dict responsiveness to checkpoint blockade or epi-
genetic modulators. Translation of these tools into 
clinical workflows could permit dynamic, patient-
specific treatment adaptation, early detection of 
therapeutic resistance, and identification of optimal 
windows for reversal of exhaustion. The conver-
gence of spectroscopy, epigenetics, immunotherapy, 
and computational intelligence thus offers a trans-
formative framework that moves beyond passive 
observation toward active reshaping of the GBM 
immune ecosystem, ultimately enabling precision-
guided immuno-oncology interventions.
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