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ABSTRACT
Humans harbor various microorganisms, some of which reside naturally in the body, and some
of which are transferred from elsewhere. Many of these microbes are considered to be normal
flora that do not cause disease, provided that they occur only in their normal anatomical site in
the body. The development of malignant lesions requires a long incubation time, even after di-
rect exposure to known carcinogens. Multistep tumorigenesis is required to transform a normal
cell into a cancerous one. The role of different microbes in tumorigenesis has expanded to include
their potential capacity to form and modulate several cancer hallmarks, including the alteration of
the immune response, tumor-promoting inflammation, angiogenesis, tumor growth and prolifer-
ation, and pro-carcinogenic metabolite production. Furthermore, microbes may damage the host
DNA and induce genomic instability. This review provides a basic overview of the process of tu-
morigenesis and the role of different microorganisms in cancer accuracy. Then this study discusses
the different mechanisms of tumor induction by viruses, bacteria, protozoa, and fungi. Finally, it
highlights the necessary health precautions that need to be taken to prevent the development of
cancers.
Key words: cancer, carcinogenesis, incidence, health precaution, microorganisms

INTRODUCTION
Cancer is one of the most common diseases world-
wide. It is the result of the uncontrolled growth of
abnormal cells due to genetic mutations. Cancer de-
velops when normal cells lose control of their pro-
liferation. They keep growing and dividing rather
than dying, and this forms a new, abnormal mass of
tissue called a tumor1. Despite the advances made
in oncological diagnoses, management, and therapy,
there has been a steady increase in the number of
cancer patients globally 2. Many studies estimate that
roughly 20–25% of all human malignancies world-
wide are related to microbial infections3,4. The role
of different microbes in tumorigenesis has expanded
to include their potential capacity to form and mod-
ulate several cancer hallmarks, including the alter-
ation of the immune response5, tumor-promoting
inflammation6,7, angiogenesis8, tumor growth and
proliferation9, and pro-carcinogenic metabolite pro-
duction10. Furthermore, microbes may damage the
host DNA and induce genomic instability 11,12. Var-
ious oncogenic mechanisms have been suggested for
viruses, bacteria, protozoa, and fungi.
Recently, a number of review articles have dis-
cussed themechanism of tumorigenesis for single mi-
crobes, including viruses13, bacteria14, protozoa15,
and fungi16. Other reviews have comprehensively

covered the role of microbes and their relation to can-
cer17,18 and their effect on the human immune sys-
tem19. To the best of our knowledge, no comprehen-
sive review has yet been published that discusses the
role of all microorganisms in the incidence of can-
cer. The current review provides a straightforward
overview of oncogenic microorganisms and the pro-
cess of tumorigenesis. It explores different carcino-
genic microorganisms and their mechanisms in can-
cer induction, and it also highlights the necessary
health precautions that can be undertaken to prevent
the development of cancer.

MECHANISMS OFMICROBIAL
CARCINOGENESIS
Microbial infections have recently been recognized as
one of the top causes of many types of cancer, es-
pecially in undeveloped and developing counties due
to poverty and unhygienic environments20. Interna-
tional cancer research agencies have classified infec-
tions due to eleven pathogenic species as Group 1 car-
cinogens. These include the hepatitis B virus, hep-
atitis C virus, Helicobacter pylori, Clonorchis sinen-
sis, Opisthorchis viverrini, Schistosoma haematobium,
human papillomavirus, human T-cell lymphotropic
virus, human immunodeficiency virus, Epstein-Barr
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virus, and human herpesvirus21,22. Most of the em-
phasis has been on viruses due to their direct influ-
ence on human genes23 and bacteria, which causes
chronic inflammation leading to cancer24. Although
fungi and parasitic protozoa have largely been over-
looked, they are now being investigated as important
factors in microbial carcinogenesis25,26.

Carcinogenic viruses
The history of tumor virology began in 1911 with the
discovery of a filterable agent capable of inducing sar-
comas in chickens27. Later on, this filterable agent
was shown to be a retrovirus that proved able to trans-
duce a gene, v-src, and induce tumors. The beginning
of human tumor virology came in the 1960s following
the discovery of the Epstein-Barr virus (EBV)28 that
was first observed using electron microscopy in cells
cultured from Burkitt’s lymphoma29.
International cancer research agencies have classified
seven viral pathogens as highly carcinogenic agents.
These agencies have also estimated that 1 in 10 can-
cers is caused by viruses30,31. Each year, a total
of 640,000 cancers are caused by human papillo-
maviruses (HPVs) alone32. The etiological role of
HPV in cervical carcinoma was first proposed in the
1970s by zur Hausen. Recent research indicates that
HPV accounts for more than half of infection-linked
cancers in females33,34. vonKnebel Doeberitz et al.35

reported that HPV infects human epithelial cells, in-
tegrates into their DNA, and produces oncoproteins
including E6 and E7. The oncoproteins are able to
disrupt the natural tumor suppressor pathways and
inhibit apoptosis. This permits the proliferation of
cervical carcinoma cells. HPVs have also been de-
termined to be the main cause of other human can-
cers including skin cancers in immunosuppressed pa-
tients36, head and neck tumors37, and other anogen-
ital cancers38. Rusan et al. (2015)39described 3
main pathways for HPV integration and tumorige-
nesis: an increase in oncogene expression, a loss of
function of the tumor suppressor genes, and inter-
and intra-chromosomal rearrangements. Langsfeld et
al. (2016)40 studied the life cycle of HPV and cer-
vical cancer induction and reported that when the
viral genomes migrate to the nucleus of the cervical
epithelial cells (maintained at ∼100 copies/cell), the
virus is continuously amplified in the daughter cells.
The expression of oncoproteins (E6 and E7) is in-
creased, leading to a significant enhancement of the
cells’ proliferation and the accumulation of cellular
mutations41. This leads to a loss of cellular differ-
entiation and the cancerous cells invading the dermal

layer and neighboring tissues. Figure 1 illustrates the
life cycle of HPV during cancer formation as well as
the epithelial architecture before and after the virally
induced cancer.
Human herpes viruses are a family of oncogenic
viruses. This family includes human herpesvirus-8,
the main causal agent of Kaposi’s sarcoma and hu-
man herpesvirus-6, which has been found to be sig-
nificantly related to the etiologies of brain cancers and
lymphomas43,44. Although the tumorigenesis mech-
anisms of these viruses have not yet been firmly es-
tablished, many studies have suggested that several at-
tributes of these viruses that can promote tumorigen-
esis45,46. Choi et al. (2020)46 investigated the mech-
anism of tumorigenesis in human herpesvirus and re-
vealed that upon viral infection, the virus increases
the metabolites of non-essential amino acids. The
K1 oncoprotein of the viruses interacts with and ac-
tivates the Pyrroline-5-carboxylate reductase enzyme,
leading to an increase in the intracellular concentra-
tions of proline. Consequently, the interaction of the
viruses’ K1 oncoprotein and the reductase enzyme
promotes tumorigenesis and tumor cell growth. Kang
et al. (2017)47 reviewed Kaposi’s sarcoma–associated
herpesvirus and reported its ability to cause various
tumors in humans. The tumors begin with the in-
fection of the endothelial and B- cells by Kaposi’s
sarcoma–associated herpesvirus, leading to the for-
mation of 1 of 3 malignancies, including Kaposi’s sar-
coma and 2 B-cell lymphomas. In the early stages of
the endothelial tumor infection (Kaposi’s sarcoma),
predominant inflammation and aberrant neoangio-
genesis have been reported. However, in the later
stages due to the proliferation of infected spindle cells,
a serious modification of newly formed endothelial
cell has been observed, although the origin of the en-
dothelial cells remains elusive48. The increased rate
of proliferation of the modified endothelial cells, in
addition to its angiogenic and migratory capacities, is
the primary mechanism of Kaposi’s sarcoma oncoge-
nesis as posited in the previous research.
The Hepatitis C virus belongs to a group of enveloped
RNA viruses from the flavivirus family. It is the
causative agent for both acute and chronic hepati-
tis49. In contrast, hepatitis B virus is a DNA virus
from a different family, hepadnaviridae50. However,
the diseases that result from both hepatitis C and B
share many similarities. El-Serag et al. (2012)51 es-
timated that roughly 80% of hepatocellular carcino-
mas worldwide are associated with chronic infections
of hepatitis B virus and/or hepatitis C virus. Differ-
ent studies have found there to be a relationship be-
tween intrahepatic cholangiocarcinoma and the hep-
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Figure 1: Life cycle and cancer formation of Human papillomavirus. A) The relative position of viral genes, B)
schematic of epithelial architecture before and after viral induced cancer. Adapted from Morgan & Macdonald
(2020) 42. https://doi.org/10.6084/m9.figshare.16702444.v1

atitis C or B viruses52. Worldwide, it has been esti-
mated that 2 billion people are infected with hepatitis
B virus, and that 1.2 million deaths every year are at-
tributed to subsequent cirrhosis, hepatocellular carci-
nomas (HCCs), and hepatitis53. Ameta-analysis per-
formed in China that included 39 studies from 1954
to 2010 revealed that more than 70% of hepatocellu-
lar carcinomas were associated with hepatitis B virus
infection, 5% with hepatitis C virus infection, and 6%
with hepatitis B and C co-infection, although up to
19% of hepatocellular carcinoma cases showed no re-
lationship with hepatitis B or C54. Themajority of pa-
tients infected with both viruses developed a chronic
hepatitis infection followed by inflammation-induced
lesions. This triggered the secretion of various cy-
tokines in the liver55,56. As a result of these events,
cirrhosis and hepatocellular carcinoma were likely to
develop. Vescovo et al. (2016)57 studied the molec-
ular mechanisms of human hepatitis C virus and re-
ported that HCC is a multistep process that leads to
malignant transformation. This begins with the viral
infection, chronic inflammation, and induction of le-
sions, followed by fat accumulation (steatohepatitis)
in addition to progressive fibrosis. This process oc-
curs over a period of 20 to 40 years, and 10 — 20%
of patients went on to develop cirrhosis, whereas 1
— 5% developed typical HCC. The malignant trans-
formation of the liver cells (hepatocytes) occurs due
to the increased liver cell turnover resulting from
chronic liver injury and subsequent regeneration57.
The chronicity of these events, in addition to the ox-
idative stress, promotes and directly up-regulates the
mitogenic pathways that block apoptosis, enhancing
cell proliferation and inducing reactive oxygen species

(ROS). Hepatitis viruses also triggers the immune re-
sponse to produce several cytokines such as LTα and
LTβ , which have been reported to play a vital role in
HCC development58. The prolonged release of ROS
is considered to be the main source of genetic muta-
tions and tumorigenesis. Figure 2 presents the role
and mechanisms of the hepatitis C virus from infec-
tion to HCC.
Epstein-Barr virus is a herpesvirus that has a large
genome consisting of double-stranded DNA.This en-
codes all of the enzymes involved in the replica-
tion of its DNA and in nucleotide biosynthesis60.
It has been linked to a number of malignancies,
such as Hodgkin’s disease61, B- and T-cell lym-
phomas62, leiomyosarcomas63, post-transplant lym-
phoproliferative disease64, and nasopharyngeal car-
cinomas65. Among all of these cancers, the frequency
of Burkitt’s lymphoma, leiomyosarcomas and post-
transplant lymphoproliferative disease have dramat-
ically increased in the past few years especially in pa-
tients who suffer from immunodeficiency, revealing
the role of immunosurveillance in the prevention and
suppression of malignant transformation66. Naseem
et al. (2018)67 reported multiple factors associated
with EBV that contribute to tumorigenesis, including
inflammatory changes induced by the viral attack, the
hypermethylation of the tumor suppressor genes, the
induction of changes in the cell cycle pathways, and
host immune evasion by the virus.
Human immunodeficiency virus (HIV) is a carcino-
genic virus derived from the lentivirus family. It
is responsible for acquired immunodeficiency syn-
drome (AIDS) and it has resulted inmore than 20mil-
lion deaths worldwide68. Individuals with HIV have
been reported to have a significantly higher incidence
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Figure 2: Mechanisms of Hepatitis C virus carcinogenesis from infection to hepatocellular carcinoma. A)
Structural and non-structural proteins that play role in hepatocellular carcinoma B). Adapted from Hayes et al.
(2018) 59. https://doi.org/10.6084/m9.figshare.16702450.v1

of various malignancies compared with the general
population due to the progressive immune dysfunc-
tion69. Lung cancer is themost commonHIV-related
cancer, as demonstrated by many studies. How-
ever, the underlying mechanism of HIV is still poorly
known70,71. In one study 72, the authors suggested
that cancer patients who are infected with HIV have
a poorer prognosis compared to non-infected can-
cer patients. It has been reported that approximately
40% of HIV-associated malignancies were found to
be associated with other oncogenic viruses such as
EBV, human herpesvirus, HPV, and hepatitis B and
C viruses73. Kaposi’s sarcoma is an angioprolifera-
tive tumor that results from the Human herpesvirus-
8 infection of cells of endothelial lineage in HIV pa-
tients74. Anampa et al. (2020)75 studied the mech-
anism of HIV carcinogenesis and reported that the
viral infection itself appeared not to be directly in-
volved in carcinogenesis. Instead, it disrupts the im-
mune surveillance of tumors and other carcinogenic
pathogens. The same authors reported that HIV in-
duces cytokine dysregulation and genetic alterations,
both of which enhance the potential for carcinogen-
esis. Furthermore, HIV is associated with chronic

antigen stimulation which promotes lymphomagen-
esis75.
Human T lymphotropic virus type I is a type
of single-stranded RNA retrovirus characterized by
slow transformation and associated with adult T-cell
leukemia76. The genome of this virus contains two
long-terminal repeats and encodes for several genes,
such as flanking gag, env, and pol, in addition to other
accessory genes. These genes have been postulated
to play a significant role in tumorigenesis77. Sev-
eral proteins in Human T lymphotropic virus type
I have been demonstrated to play key roles in cancer
induction through cellular transformation as well as
the immortalization of infected T lymphocytes78. It
is of note that the Human T lymphotropic virus type
I oncoprotein Tax inhibits the innate IFN immune re-
sponse by mediating an interaction between the mi-
tochondrial antiviral-signaling protein, the stimula-
tor of interferon, and the receptors interacting with
protein 1. This interaction causes the suppression of
the TANK-binding kinase 1 enzyme–mediated phos-
phorylation of IFN regulatory factor 3/IFN regulatory
factor 779. The accessory protein of Human T lym-
photropic virus, the leucine zipper factor, disrupts ge-
nomic integrity and inhibits apoptosis as well as the
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autophagy of the target cells. This leads to the en-
hancement of cell proliferation and facilitates its eva-
sion from immune surveillance. This mediates onco-
genesis78.

Carcinogenic bacteria
Recently, a significant number of studies have im-
plicated that different types of bacteria are involved
in the etiology of some cancer types, including Heli-
cobacter pylori in mucosa-associated lymphoid tissue
cancer80 as well as gastric cancer81, Salmonella typhi
in gallbladder cancer82, Bacteroides fragilis in colon
cancer83, and Chlamydia trachomatis in cervical can-
cer84. This has inspired researchers to further study
the mechanisms through which these bacteria pro-
mote oncogenesis in order to provide evidence to sup-
port such a role. H. pylori is the most abundant bac-
terial species in the gastric epithelium due to its abil-
ity to resist and adapt to gastric acidity. Its presence
has beenmarkedly associatedwith the development of
gastric and mucosa-associated lymphoid tissue can-
cers. A significant number of researchers have linked
H. pylori infections with gastric cancer and mucosa-
associated lymphoid tissue cancer85–88, considering
it to be among the most important, if not the top,
risk factor for gastric cancer in the world. Posselt et
al. (2017)89 studied the mechanism of gastric cancer
induction by H. pylori and reported that upon infec-
tion, the bacteria actively interferes with the host gas-
tric cells via the secretion of bacterial proteases and
the activation of cellular proteases. This may be in-
volved in the induction of cancer. H. pylori regu-
lates and controls the secretion of proteases and thus
hosts cytokines in early and late pathogenesis90. It
has been reported thatH. pylori continuously induces
various transcription factors and proteases, includ-
ing disintegrin and metalloproteinase (ADAM) and
various types of matrix metalloproteinases (MMPs).
It can highly secrete the host cytokines and interfere
with the extracellular matrix proteins or lateral junc-
tion complexes91. The chronic ulceration that results
fromH. pylori pathogenesis will eventually lead to cell
proliferation and the formation of tumors89. Figure 3
summarizes the mechanisms of gastric cancer induc-
tion by H. pylori.
Alfarouk et al. (2019)92 studied the possible role ofH.
pylori in gastric cancer and revealed that the carcino-
genicity of such bacteria depends on bacteria–host re-
lated factors. They reported several genes expressed
by the bacteria that accelerate its pathogenicity, in
addition to the remodeling of the microenvironment
including urease, carbonic anhydrase, Lewis antigen,

vacA, cagA, and babA2. The variety of these virulence
factors asmucys inH. pylorihelps to stabilize its popu-
lation size in the stomach. This leads to the induction
of chronic inflammation93. This creates an unfavor-
able habitat that alters the pH due to the chronic in-
flammation around the normal gastric cells. This in-
stigates their malignant transformation and provides
an accurate marker of gastric cancer94,95. The trans-
formation of gastric cells might be our bodies’ nor-
mal defense against H. pylori as various environmen-
tal changes elicit phenotypic plasticity in the gastric
cells, enabling them to take on acidophilic pheno-
types.
B. fragilis has been reported to be one of the major
causes of colorectal cancer96. In one study, Chen et
al. (2020)83reported that B. fragilis accelerates colo-
nization by producing a biofilm in the intestinal tract.
This causes a series of inflammatory reactions that
result from toxin production. The accumulation of
B. fragilis toxin may lead to severe tissue injury and
chronic intestinal inflammation which may then de-
velop into colorectal cancer. Snezhkina et al.97 in-
vestigated the mechanisms of colorectal cancer for-
mation by B. fragilis and found that bacterial en-
terotoxins are able to activate spermine oxidase from
the host cells. This produces H2O2 and spermidine
as the byproducts of polyamine catabolism. These
compounds significantly induce an inflammatory re-
sponse leading to tissue injury and disturbance. The
same authors found two mediators, namely c-Myc
and C/EBPβ to be overexpressed in tumors. These
mediators play a significant role in cell proliferation,
inflammation, and metabolic reprogramming.
S. typhi is another pathogenic bacteria that has been
linked to the malignant transformation of the gall-
bladder98. S. typhi has the potential to promote
carcinogenesis due to the production of various se-
cretions such as nitroso compounds, bacterial glu-
curonidase, and toxic molecules. Cytolethal distend-
ing toxins are groups of toxins produced by S. ty-
phi that are able to trigger irreversible cell cycle ar-
rest and apoptosis resulting from DNA damage99. Di
Domenico et al. (2017)100 reported that the typhoid
toxin produced by S. typhihas strong carcinogenic po-
tential as it induces DNA damage which leads to vari-
ous alterations in the cell cycle of intoxicated cells101.
Furthermore, the biofilm production of S. typhi has
been linked to tumorigenesis by promoting a per-
sistent infection in the gallbladder. This leads to a
chronic local inflammatory response that exposes the
epithelial cells to severe and repeated damage. The
presence of chronic infection around gallstones may
enhance the formation of an S. typhi biofilm, allowing
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Figure 3: Mechanisms of gastric cancer induction by H. pylori. A) Secretion of various transcription fac-
tors which can directly shed cytokines. B) Advanced stage of infection where proteases are implicated in cell
proliferation and tumorigenesis. Adapted from Posselt et al. (2017)89 . https://doi.org/10.6084/m9.figshare.167024
53.v1

the bacterial cells to detach from the gallstones and
release various carcinogenic molecules. This induce
genomic instability in the gallbladder epithelial cells
and leads to tumorigenesis100. Figure 4 presents the
proposed mechanisms by which S. typhi may induce
gallbladder cancer.
C. trachomatis has been reported to be involved in
the process of cell proliferation and the inhibition of
apoptosis. The induction of chronic inflammation by
C. trachomatis and the same as a potential cause of
cervical cancer was studied by Zhu et al. (2016)84.
The authors concluded that individuals infected with
C. trachomatis have a significantly higher risk of cervi-
cal cancer. In a different study, Laban et al. (2019)102

evaluated the association of C. trachomatis infection
with high-grade serous ovarian cancers and tubal car-
cinoma. The authors detected bacterial DNA in 84%
of high-grade tubal serous cancers which revealed the
strong relationship between C. trachomatis and this
type of cancer. Although these findings have not yet
been supported by a suggestedmechanism of carcino-
genicity, these findings need to be replicated and fur-
ther investigated to understand the potential role of
C. trachomatis in ovarian and cervical cancers.

Carcinogenic parasites
Theassociations between parasitic infections and can-
cers have been well established in numerous stud-
ies103–106 (103-106). Schistosoma haematobium,
Clonorchis sinensis, and Opistorchis viverrini have

been reported to be among themost carcinogenic par-
asites107, whereas other infectious species have been
linked due to being the potential cause of cancers, es-
pecially the genera Schistosoma and Opisthorchis108.
Many mechanisms have been suggested for carcino-
genic parasites. Among them, 3 have been described
for liver flukes, including metabolic oxidative stress,
chronic inflammation, and tissue damage due to par-
asitic attack 109. Van Tong et al. (2017)110 studied
the relationship between carcinogenesis and human
malignancy in different parasites and revealed the
high carcinogenicity of 3 helminth diseases includ-
ing schistosomiasis, clonorchiasis, and opisthorchia-
sis. The authors illustrated the proposed mechanisms
for cancer induction as presented in Figure 5. The
chronic inflammation induced by the parasitic infec-
tions leads to the enhanced activation of many signal-
ing pathways. This eventually generate somatic muta-
tions that may activate oncogenes111.
The metabolite secretions of Opisthorchis, Clonorchis,
and Schistosoma species into the microenvironment
of the host may induce metabolic processes such as
oxidative stress which facilitates chromosomal DNA
damage of the host cells, leading them to becoming
cancerous113. The physical damage of host tissues
due to parasitic attack, together with the immune re-
sponse and wound healing process, lead to the se-
cretion of various cytokines to increase cell prolifer-
ation and transformation. This also increases the po-
tential for DNA damage and/or mutations114. Com-
bined parasite–host interaction events, namely physi-
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Figure 4: Proposedmechanisms for the inductionof gallbladder cancer by S. typhi. (A) Chronic infectionwith
S. typhi strains in the presence of gallstones. (B) Gallstones enhance the biofilm formation of S. typhi. (C) Bacterial
cells detach from gallstones and release carcinogenic molecules. Adapted from Di Domenico et al. (2017) 100 . htt
ps://doi.org/10.6084/m9.figshare.16702462.v1

cal damage, parasite-derived products and chronic in-
flammation, as well as the combined effects on these
processes on the host tissue and their DNA, leads to
significant modifications and a higher risk of carcino-
genesis due to changes in the cells’ growth rate and
proliferation, in addition to their survival. This in
turn may initiate tumorigenesis and promote malig-
nancy 110. Table 1 summarizes the parasites that have
been linked to different types of cancers and the pro-
posed mechanism of carcinogenesis for each.

Carcinogenic fungi
Recent studies have revealed that fungi in the hu-
man gut can move into the pancreas under certain
circumstances, triggering changes in the pancreatic
cells that can lead to tumorigenesis126. Aykut et
al. (2019)127 found that the fungal component of
the pancreatic microbiome are significantly altered
in pancreatic ductal adenocarcinoma. In fact, sev-
eral fungal genera promote tumor formation. Sim-
ilarly, Malik et al. (2018)128 found that common

resident gut fungi can promote the activation of in-
flammasome during azoxymethane/dextran sodium
sulfate–induced colitis in a mouse model. The au-
thors reported that such fungi were able to alter the
cell signaling during inflammasome activation. This
resulted in the secretion of various cytokines includ-
ing interleukin (IL)-18 and interferon-γ , suggesting
that during spleen tyrosine kinase-caspase recruit-
ment, domain-9 signaling maintains a microbial—
or specifically fungal—ecology that promotes the ac-
tivation of inflammasome and thus restrains colitis
and colon tumorigenesis128. Malassezia species are
the most common fungal species in mammalian skin,
and they are the best-studied fungal species in skin
conditions include atopic dermatitis and dandruff 129.
Some studies have reported that inflammation caused
by the overgrowth of Malassezia may worsen gastric
ulcers, weakening the immune system and chang-
ing the cell-surface signaling130–133. Therefore, an
abundance ofMalassezia species in pancreatic ductal
adenocarcinoma tumors may be medically relevant.
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Figure 5: Proposed carcinogenic mechanisms of S. haematobium and O. viverrini . Adapted from Vale et al.
(2020) 112 . https://doi.org/10.6084/m9.figshare.16702465.v1

Aykut et al. (2019)127 found that the administration
of antifungal drugs halted pancreatic ductal adeno-
carcinoma progression in mouse models and signif-
icantly improved the ability of chemotherapy, lead-
ing to significant shrinking of the tumors. Interest-
ingly, the subsequent repopulation of healed lab an-
imals by a Malassezia fungal species significantly ac-
celerated the growth of pancreatic ductal adenocarci-
noma again134. Not much work has considered the
relationship between different fungi and cancers but
these findings suggests that anymicroorganism is able
to change the normal nature of the human body, mak-
ing it a potential cause of cancer.

CANCER PREVENTION ANDHEALTH
PRECAUTIONS
In the age of personalized medicine and self-
treatment, it is extremely important to isolate the
causes of health issues to effectively plan personal-
ized therapy. Various epidemiological studies have re-
vealed that leisure time and physical activity can sig-
nificantly reduce and even prevent at least 13 types of
cancer95,135. Other studies have provided evidence
that exercise significantly reduces the risk of develop-
ing breast, colon, and prostate cancers136,137. The na-
ture and duration of exercise training involves whole-
body homeostasis. This leads to the widespread adap-
tation of the body’s cells, tissues, and organs138,139.

Various systemic factors such as the release of cate-
cholamines andmyokines during exercise, in addition
to sympathetic activation, shear stress, increase blood
flow, and an increase body temperature. All imme-
diately exert stress on tumor metabolism and home-
ostasis140,141. These acute effects in the long-term
will lead to improved blood perfusion, metabolism
adjustments, enhanced immunogenicity, and intratu-
moral adaptations, contributing to slower tumor pro-
gression142. Various probiotic strains have been used
to treat microbial infections, especially gastrointesti-
nal tract infections, to boost human health as well as
to control the biofilm formation that may lead to tu-
morigenesis143. Jacouton et al. (2017)144evaluated
the role of Lactobacillus casei in colorectal cancer pre-
vention and revealed that it had an immunomod-
ulatory effect mediated by the regulation of differ-
ent cytokines (particularly IL-22). This was in ad-
dition to an antiproliferative effect mediated by Bik,
caspase-7 and caspase-9 regulation. The authors sug-
gested using these probiotics in food supplements
as a promising strategy for cancer prevention. In a
different study, anti-biofilm properties were evalu-
ated in cocktails of probiotic strains against B. frag-
ilis and Escherichia coli strains. They were demon-
strated to be highly preventive of tumorigenesis in-
flammation145,146. Hindering the biofilm formation
of pathogenic gut microbes is said to be an effec-
tive method of cancer prevention for which certain
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Table 1: Mechanism of carcinogenesis of parasitic pathogens

Parasitic pathogens Disease Associated cancer Proposed mechanism of 
carcinogenesis

Refs

Cryptosporidium
parvum

Cryptosporidiosis Colorectal cancer Inhibit apoptosis and enhance
cells proliferation

115

Schistosomamansoni Schistosomiasis Colorectal cancer and 
hepatocellular 
carcinoma

Chronic inflammation, and 
oxidative stress

116

Schistosoma 
japonicum

Schistosomiasis Colorectal cancer and 
squamous cell 
carcinoma

Chronic inflammation, and 
oxidative stress

117

Schistosoma 
haematobium

Schistosomiasis Urinary bladder 
cancer, squamous cell 
carcinoma

Chronic inflammation, and 
oxidative stress

118

Blastocystis hominis Blastocystis Colorectal cancer Signaling induction, leading to
impaired apoptosis

119

infection 

Toxoplasma gondii Toxoplasmosis Brain cancer, menin-
gioma and glioma

Triggering a chronic 
inflammatory and alteration of 
cell 
signal-ing.

120

Clonorchis sinensis Clonorchiasis Cholangiocarcinoma Chronic inflammation, cell 
proliferation & oxidative stress

121

Trichomonas 
vaginalis

Vaginitis and 
urethritis

Prostate, cervical and 
reproductive tract, 
cancers

Triggering of proto-oncogenes
and altering junctional protein
expression

122

Burkitt lymphoma Immune suppression for 
carcinogenic viruses

123Plasmodium         Malaria 

falciparum

Opistorchis viverrini Opisthorchiasis Cholangiocarcinoma Chronic inflammation, cell 
proliferation & oxidative stress

124

Taenia solium Neurocysticercosis Gliomas Chronic inflammation and  
cellular proliferation

125

strains of probiotic can be utilized147,148. The pro-
duction of antagonistic compounds, the modulation
of the host immune responses, and competition with
pathogens are among the mechanisms that have been
suggested due to the beneficial role that probiotics ap-
pear to play, as Figure 6 illustrates149. Natural prod-
ucts have been screened for their anticancer proper-
ties, and many have been used in the development of
cancer preventive and anticancer drugs150. Most an-
ticancer drugs that have been approved by the Food
and Drug Administration of the United States are ei-
ther natural or they mimic natural products151. Song
et al. (2016)152 reported that the prevention of any
disease requires either the avoidance or reduction of
risk factors (i.e., carcinogenic materials or microor-
ganisms) or the early detection of and intervention
in disease evolution. In this regard, following a nat-
ural diet regime and avoiding oxidants and synthetic

materials are major factors that may limit tumorige-
nesis in addition to boosting the immune system to
help combat carcinogenic microorganisms. Figure 6
presents the mechanisms by which probiotics target
tumorigenic gut microbial biofilms.

CONCLUSION
Recent research has uncovered a great deal of in-
formation regarding the mechanisms used by differ-
ent microorganisms to cause, colonize, or cure can-
cer. However, many questions remain. It has long
been known that many microorganisms can trigger
tumorigenesis in humans but to date, the exactmolec-
ular mechanisms of many of these microbes have re-
mained unclear. The continued exploration of these
questions will bring research ever closer to the pre-
vention, early diagnosis, and truly effective treatment
of this scourge of mankind. Here we have discussed
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Figure 6: Schematic illustration of probiotic mechanisms targeting tumorigenic gut microbial biofilms.
Adapted from Chew et al. (2020) 153 . https://doi.org/10.6084/m9.figshare.16702468.v1

the role of viruses, bacteria, protozoa, and fungi in
tumorigenesis and elucidated the possible molecular
events that may be involved in the carcinogenic prop-
erties of each type of pathogen. We have also explored
the structural basis for how the host cells interact
with these microorganisms to produce the hallmarks
of cancer. Microbial secretions, as well as immune-
regulating cytokines, may play an essential role asmu-
tagenic factors.
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