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ABSTRACT
Introduction: Resveratrol (RES) is a multi-biofunctional compound found in grapes and mulber-
ries. The present investigation was aimed at the green synthesis of resveratrol-carboxymethyl
nanoparticles using low viscosity chitosan (RES-CMCS) and evaluation of their antidiabetic and an-
tiobesity activity. Methods: The obtained RES-CMCS was analyzed via measurement of zeta po-
tential, particle size, morphology, and entrapment effectiveness. Its antidiabetic and antiobesity
activities were also examined in an obese rat model. Results: The mean size of the RES-CMCS
nanoparticles was 54.7 nm, the zeta potential was (-) 59.4 mV, and the entrapment effectiveness
was 85.46%, with spherical nanoparticle morphology detected. In addition, treatment of obese
diabetic rats with RES-CMCS (25 and 50 mg) as well as metformin (500 mg/kg.b.w) resulted in the
normalization of several physiological parameters including body weight, levels of blood glucose,
lipid profile, oxidative stress indicators, and expression of GLUT-4 and leptin genes. Conclusions:
The findings show the potential for RES-CMCS as a new pharmaceutical medicationmethod for the
treatment of obesity via modulation of antioxidant enzymes and expression of GLUT-4 and leptin.
Key words: Resveratrol, RES-CMCS, insulin, total cholesterol, leptin, GLUT-4, rats and histopathol-
ogy

INTRODUCTION
Obesity is a complex disease that stems from excess
body fat1. It is an expanding public health prob-
lem worldwide, creating a global health epidemic2.
According to a 2016 World Health Organization re-
port, obesity has nearly tripled since 1980, with 1.9
billion adults worldwide who are considered over-
weight, including 650 million with obesity 3. Obesity
has long been associated with an increased risk of car-
diovascular disease. The aim of diabetes treatment
is to avoid microvascular complications (retinopathy,
nephropathy, neuropathy, and microangiopathy); in-
tensive glycemic control has been shown to minimize
the risk of long-term complications4. Because of the
elevation of plasma lipids, which contributes to early
cardiovascular disease and atherosclerosis in diabetic
patients, the optimum diabetes treatment should en-
hance the lipid profile in addition to managing glu-
cose.
Many studies have shown that metformin can pro-
mote weight loss in overweight or obese patients5,6.
Resveratrol, a substance found in grapes, blueberries,
peanuts7, and redwine7 has antioxidant and free rad-
ical scavenging properties8, as well as anti-cholestatic

activity 9. It has been shown to be beneficial in dia-
betic hyperglycemia and dyslipidemia control10.
Chitosan-based nanomaterials are among the most
widely explored natural polysaccharides due to their
biocompatibility, biodegradability, relatively low cost,
antibacterial and cationic nature, and low toxicity 11.
The mechanism of chitosan nanoparticle produc-
tion requires an electrostatic interaction between the
amine group of chitosan and the negatively charged
group of a polyanion, such as a hydroxide anion12.
Nanotechnology is now widely employed for the pre-
vention and treatment of infectious and noninfectious
disorders to better target immune responses13. Lo-
calized nano-immunotherapy increases the level of
immunostimulatory chemicals by reducing systemic
toxicity 14,15, while drug encapsulation in nanoform
is a promising way to increase drug solubility and
biodistribution. Furthermore, unwanted interac-
tions, breakdown of drugs before reaching target tis-
sues and cells, and nonspecific drug accumulation in
other tissues can also be avoided16. Physicochemi-
cal parameters such as molecular weight, solubility,
diffusivity, and viscosity are used to select the carrier
material17.
Encapsulation protects bioactive ingredients, extends
storage life, and preserves the finished product. It is
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also utilized to control the dissolution profile and as-
sist the drug to reach the target location18,19.
Resveratrol has been tested in vivo and displays anti-
inflammatory properties in bowel disease20,21. How-
ever, no studies have been performed on the effects of
resveratrol nanoparticles in the treatment of obesity.
Here, we present a simple method to assess the thera-
peutic potential of resveratrol nanoemulsions in a rat
model of obesity induced by a high-fat diet (HFD), as
part of our ongoing research program to determine
the medicinal value of resveratrol9,14,15,22,23.

MATERIALS ANDMETHODS
Materials
Carboxymethyl chitosan (CMCS) and buffers
(Sigma–Aldrich Chemical Co. catalog NO. T7517-
5G), triglyceride tripalmitate (Sigma–Aldrich,
Aldrich Chemical Co. catalog NO. T8127-100G), soy
lecithin (Avanti Polar Lipids catalog NO. 206775),
and chloroform were used.

RES-CMCSNPpreparationandoptimization
Resveratrol (RES)-CMCSNPs were prepared accord-
ing to the method of Elgizawy et al.24,25 with some
modifications. Briefly, CMCS was completely dis-
solved in water, appropriate amounts of Tween 80
were added, and impurities were removed by filtra-
tion. Then, appropriate amounts of chloroform were
added dropwise at a speed of 10,000 rpm. Homo-
geneity after high-pressure homogenization (400 to
1200 bars) indicated that materials were refined and
uniformly mixed in the homogenizing valve and the
emulsified solution, thereby resulting in smaller, more
uniform and stable nanoparticles. Nanoparticle size
was the indicator of the inspection. After comple-
tion of the emulsification process, we used anhydrous
calcium chloride as a cross-linking agent. CMCS is
an amphoteric electrolyte that has a negative charge
under alkaline conditions. Inter- or intramolecular
cross-linking reactions between the weak acid anionic
group (COO−) and Ca2+ ions can occur, resulting in
nanoparticles. The quality of the added CaCl2 can
directly affect the particle size of the nanoparticles,
as well as potential, entrapment efficiency, and drug-
loading amount, while CaCl2 concentration has been
shown to be a critical factor in single-factor experi-
ments. Tween-80 was added to the CMCS solution,
and resveratrol was sufficiently dissolved in chloro-
form. Chloroform was added dropwise to the CMCS
solution under stirring in a homogenizer, and high-
pressure homogenization was carried out, resulting
in emulsification of the homogenate. CaCl2 solution

was added dropwise to the emulsion. Following com-
pletion of the cross-linking process, we detected the
particle size and potential of each sample. Chloro-
form was removed using a rotary evaporator under
vacuum and centrifugation at 10,000 rpm for 30 min.
The nanoparticles were separated, the precipitate and
the supernatant were collected, and the precipitate
was washed twice with ultrapure water. The super-
natant was used to determine encapsulation efficiency
and drug loading. RES-CMCSNPs were freeze-dried
at -50◦C for 48 h. In this process, 50% (mannitol per-
centage of RES-CMCS quality) mannitol was selected
as the lyophilized protective agent for these particles.

RES-CMCS characterization and morphol-
ogy

SEM (JSM-690, JEOL, Inc., Tokyo, Japan) and
FETEM (JSM-2100F, JEOL Inc.) at 200 kV were used
to study the morphological properties of RES-CMCS.
Infrared spectral data were also used to analyze the
structure of the particles (Shimadzu MR 470, Japan).
A droplet of nanoparticles was placed on top of the
carbon coating and left to sit for 24 hours at room
temperature. The TEM images showed that the RES-
CMCS particles had circular morphology and an av-
erage diameter of approximately 98 nm.

Entrapment efficiency

RES-CMCS (5.0 mg) was crushed and distributed in
a mixture of 5.0 mL distilled water and 5.0 mL ethyl
acetate; the ethyl acetate phase was separated by gen-
tle shaking. A UV–Vis spectrophotometer was used
to quantify the amount of free resveratrol in the ethyl
acetate phase at 419 nm. The following equation
was then used to compute drug entrapment efficiency
(percentage)1:

Animals

This experiment was conducted in accordance with
guidelines established by the Animal Care and Use
Committee of the Faculty of Applied Medical Sci-
ences, October 6 University, Egypt. Forty-two adult
male albino rats weighing 180± 10 g were purchased
from the National Cancer Institute, Cairo Univer-
sity. They were individually housed in cages in an air-
conditioned room at a temperature of 22± 2 ◦C, rela-
tive humidity of 60%, and an 8:00 to 20:00 light cycle.
During the acclimatization period, each animal was
raised on a regular diet ad libitum.
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Table 1: Method of dosage

Groups Treatment description

(I) Was received RD for 8-weeks period.

(II) Was fed RD + RES-CMCS (25 mg/kg.b.w.) for 8-week period 24

(III) Was fed RD + RES-CMCS (50 mg/kg.b.w) for an 8-week period 24

(IV) Was received HFD for 8-weeks period

(V) Was fed HFD + RES-CMCS (25 mg/kg.b.w.) for 8-week period 24

(VI) Was fed HFD + RES-CMCS (50 mg/kg.b.w) for an 8-week period 24

(VII) Was HFD + metformin (500 mg/kg.b.w.) for an 8-weeks period 25

Experimental design
This experiment was designed to examine the bio-
chemical effects of RES-CMCS onHFD-induced obe-
sity in rats. Data collection was ethically approved by
the Research Ethics Committee of the Faculty of Ap-
pliedMedical Sciences, October 6 University in Egypt
(No. 20210902). Seven groups of animals, each con-
sisting of six rats, were treated daily for 8 weeks as fol-
lows (Table 1).
Obesity was induced by administering RD fromDyets
Inc. (Bethlehem, PA, USA) plus 200 g of fat/kg RD
and 1% (w/w) cholesterol26. Body weights were mea-
sured biweekly.

Blood sampling and biochemical assays
Blood sampleswere collected in heparinized test tubes
and centrifuged; fresh plasma was used for the colori-
metric estimation of plasma glucose26 and the detec-
tion of insulin using an ELISA kit (Alpco Diagnos-
tics)27. Plasma TG, TC, and HDL-C were measured
using diagnostic kits28–30.
Additionally, the liver was removed directly and ho-
mogenized in phosphate-buffered saline (pH 7.4, 1
ml) for the estimation of hepatic TBARS, GSH, and
SOD levels31–33.

RT–PCR
Sepasol-RNA1Super was used to extract total RNA
from adipose tissues. Isolated RNA (10–15 µg) was
used to quantify leptin and GLUT-4 expression by
real-time PCR as previously described34. Quantita-
tive RT–PCR data are presented as % of control.
The primer sequences were leptin-F: 5′-
GCCAGGCTGCCAGAATTG -3′ and lep-
tin -R: 5′- CTGCCCCCCAGTTTGATG -3’;
and GLUT4- F: 5´GAGCCTGAATGCTAATG-
GAG3´and R 5´GAGAGAGAGCGTCCAAT-
GTC3´. The internal control was β -actin
mRNA. Primer sequences were β -actin-F: 5′-

AGAGGGAAATCGTGCGTGAC-3’ and β -actin -R:
5′- CAATAGTGA TGACCTGGCCGT-3’.

Histopathological examination
Specimens of liver tissue were collected and fixed in
10% neutral buffered formalin, dehydrated through
an ascending series of ethyl alcohol solutions (50%
— 100%), and cleared in xylene (three changes), be-
fore embedding in melted paraffin wax (MP 59◦C).
The paraffin blocks were sectioned at a thickness of
5–6 microns using a rotary microtome. Sections were
stained using hematoxylin and eosin (H&E) as de-
scribed by Bancroft and Steven35 and examined using
an Olympus (Münster, Germany) light microscope.
Photomicrographs of the liver tissue were taken at x
400 magnification.

Statistical analysis
For each of the six different analyses, the results were
reported as mean ± SD. SPSS/18 was used to statisti-
cally evaluate all data36. One-way analysis of variance
was performed to evaluate the hypotheses, followed
by the least significant difference test (p < 0.05).

RESULTS
High-performance liquid chromatography carried
out on resveratrol and RES-CMCS revealed simi-
lar patterns, with retention times of 6.42 and 6.42
and peak areas of 299340 and 1610156, respectively
(Table 2).
The entrapment efficiency (%), particle size, polydis-
persity index, and zeta potential values of RES-CMCS
are shown in Figure 2 and Table 3. Particle size was
54.7 ± 4.55 nm and zeta potential was (-) 59.4 mV,
while entrapment efficiency and polydispersity index
values were 85.46% and 0.623, respectively. During
the 8-week period, the body weight of the RD rats in-
creased gradually, as shown in Table 4. In compar-
ison, the weight of the HFD group increased signif-
icantly during the same period. After 8 weeks, rats
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Figure 1: Chitosan/resveratrol interaction in RES-CMCS.

Figure 2: TEM analysis of RES-CMCS.
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Table 2: HPLC analysis of RES-CMCS

Drugs Retention Time (min) Peak Area (uV*sec) Resveratrol Concentration
(µg/ml)

RES 6.42 299340 152.5

RES-CMCS 6.42 1610156 821.6

Table 3: Description of RES-CMCS

Drugs Entrapment
efficiency (%)

Particle size
(nm)

Polydispersity index ZETA potential
(mv)

RES-CMCS 85.46 98.4± 2.2 0.623 +31.60

Table 4: Body weight of control and experimental groups of rats

No. Groups Number of weeks
Body weight of rats (g)

0 2 4 6 8

(I) Regular diet (RD) 187.4± 10.8 Aa 195.5± 12.7Aa 208.0± 11.3Bb 210.2± 14.9Bb 225.8±
10.55Cc

(II) RD+ RES-CMCS
(25 mg/kg.b.w.)

188.6± 9.6 Aa 194.7± 14.0Aa 200.3± 8.70Ba 206.8± 10.8Ca 217.90±
12.60Db

(III) RD+ RES-CMCS
(50 mg/kg.b.w.)

192.8± 8.2 Aa 196.5±
11.90Aa

201.8± 14.50Ba 203.5±
11.65Ba

210.4±
13.90Ca

(IV) High-fat diet
(HFD)

186.5± 7.4 Aa 215.8± 13.5Bb 246.5± 11.2Cd 264.90±
7.9Dd

287.8±
8.4Ee

(V) HFD+ RES-CMCS
(25 mg/kg.b.w.)

188.7± 9.5 Aa 200.6± 10.8Aa 219.8± 16.5Bc 225.6*±
14.3Bc

235.6±
15.9Cd

(VI) HFD+ RES-CMCS 186.6± 10.0 Aa 202.8± 12.7Aa 209.5± 8.9Bb 213.6± 8.70Bb 227.7±
9.8Cc(50 mg/kg.b.w.)

(500 mg/kg.b.w.)
184.9± 8.50 Aa 206.8± 9.5Bb 211.5± 10.5Bb 215.70±

13.4Bb
228.4±
8.9Cc

Values are given as mean ± SD at P ≤ 0.05. Small letters are used for comparison between the means within the column. Capital letters are
used to compare means within the row.

Figure 3: Effect of RES, RES-CMCS andmetformin on leptin gene expression in experimental rats.
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Figure 4: Effect of RES, RES-CMCS andmetformin on GLTU4 genes expression in experimental rats.

Figure 5: An agarose gel electrophoresis shows PCR products of adipose tissue leptin, GLUT 4 and beta
actin in different studied groups. M: DNAmarker with 100bp
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Table 5: Effect of RES, RES-CMCS andmetformin on plasma insulin and glucose in rats

No. Groups Plasma insulin
(mmol/L)

Plasma glucose 
(mmol/L)

(I) Regular diet (RD) 2.52± 0.12 a 5.86± 0.42a

(II) RD+ RES-CMCS
(25 mg/kg.b.w.)

2.58± 0.28 a 5.92± 0.44 a

(III) RD+ RES-CMCS
(50 mg/kg.b.w.)

2.64± 0.22 a 6.09± 0.34 a

(IV) High-fat diet (HFD) 3.28± 0.37 b 8.30± 0.56 c

(V) HFD+ RES-CMCS
(25 mg/kg.b.w.)

3.02± 0.43 7.84± 0.43

(VI) HFD+ RES-CMCS
(50 mg/kg.b.w.)

2.56± 0.26 a 7.03± 0.55 a

(VII) HFD + Metformin 
(500 mg/kg.b.w.)

2.62± 0.24 6.85± 0.6 a

Values represent the mean± SE (n = 6). Data shown are mean± standard deviation of a number of observations within each treatment. Data
followed by the same letter are not significantly different at P≤ 0.05.

Table 6: Effect of RES, RES-CMCS andMetformin on plasma TC, TG, HDL-C experimental in rats

No. Groups TC
(mmol/L)

TG
(mmol/L)

HDL-C
(mmol/L)

(I) Regular diet (RD) 2.65± 0.24 a 0.98± 0.07a 1.36± 0.07 a

(II) RD+ RES-CMCS
(25 mg/kg.b.w.)

2.77± 0.28 a 0.94± 0.08 a 1.39± 0.06 a

(III) RD+ RES-CMCS
(50 mg/kg.b.w.)

2.62± 0.32 a 0.88± 0.07 a 1.40± 0.11 a

(IV) High-fat diet (HFD) 5.15± 0.28 c 1.80± 0.12c 0.86± 0.09 c

(V) HFD+ RES-CMCS
(25 mg/kg.b.w.)

4.27± 0.29 b 1.50± 0.09 b 1.13± 0.10

(VI) HFD+ RES-CMCS
(50 mg/kg.b.w.)

3.62± 0.36 b 1.20± 0.10 b 1.33± 0.07 a

(VII) HFD + Metformin 
(500 mg/kg.b.w.)

3.11± 0.31 b 0.98± 0.10 a 1.39± 0.09 a

Values represent the mean± SE (n = 6). Data shown are mean± standard deviation of a number of observations within each treatment. Data
followed by the same letter are not significantly different at P≤ 0.05.

given RES-CMCS (25 or 50 mg/kg.b.w.) and met-
formin (500 mg/kg.b.w.) had lost 18.13%, 20.9%, and
20.6% of their body weight, respectively, compared
with the HFD group (p < 0.05).
Table 5 shows the levels of plasma insulin and glu-
cose in the RD- andHFD-treated groups. Plasma lev-
els of insulin and glucose were found to be signifi-
cantly elevated (1.3- and 1.4-fold) in HFD-fed rats,
compared with RD-fed rats. After administration of
RES-CMCS (25 and 50 mg/kg.b.w.) and metformin
(500 mg/kg.b.w.) for 8 weeks, the levels of plasma
insulin and glucose were significantly reduced, com-

pared with levels in the HFD group (p < 0.05).
Plasma levels of TC and TG were significantly in-
creased (1.8- and 1.9-fold, respectively; p < 0.05),
while levels of plasma HDL-C were significantly de-
creased (1.6-fold, p < 0.05) in the HFD-fed group
of rats, compared with levels in the RD-fed group
(Table 6). RES-CMCS (25 and 50 mg/kg.b.w) and
metformin (500mg/kg.b.w.) treatment resulted in de-
creased TG and TC as well as increased HDL-C, com-
pared with the HFD group (p < 0.05).
In addition, levels of hepatic TBARS were signifi-
cantly increased (2.0-fold), while levels of GSH and
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Table 7: Effect of RES, RES-CMCS andMetformin on hepatic TBARS, GSH and SOD in rats

No. Groups TBARS
(nmol MDA/g tissue)

GSH
(mg/100 g tissue)

SOD
(U/mg protein)

(I) Regular diet (RD) 9.16± 0.61 a 36.80± 4.73 a 131.08

±9.34 a

(II) RD + RES-CMCS
(25 mg/kg.b.w.)

8.66± 0.37 a 37.48± 3.25 a 136.97

±8.5 a

(III) RD + RES-CMCS
(50 mg/kg.b.w.)

8.50± 0.46 a 37.67± 3.21 a 140.89

± 5.94 a

(IV) High-fat diet (HFD) 18.73± 0.73 c 21.96± 1.67 c 58.68

±36.35 c

(V) HFD + RES-CMCS 
(25 mg/kg.b.w.)

13.98± 1.07b 28.7± 2.26 b 120.0
± 9.86

(VI) HFD + RES-CMCS 
(50 mg/kg.b.w.)

11.07± 0.76 a 35.78± 4.47b 135.42

± 6.14 a

(VII) HFD + Metformin 
(500 mg/kg.b.w.)

10.36± 0.55 a 34± 4.34 a 129.50

±8.53 a

Values represent the mean± SE (n = 6). Data shown are mean± standard deviation of a number of observations within each treatment. Data
followed by the same letter are not significantly different at P≤ 0.05.

SOD were significantly decreased (1.67- and 2.23-
fold, respectively) in the HFD-fed group, compared
with the RD-fed rats (Table 7). RES-CMCS (25 and
50mg/kg.b.w) andmetformin (500mg/kg.b.w.) treat-
ment significantly decreased TBARS and significantly
increased GSH and SOD levels, in comparison with
the HFD group (p < 0.05).
RT-PCR analysis of adipose tissues showed that lep-
tin expression was significantly higher and GLUT-4
gene expression was significantly lower in the HDF-
fed group than in the RD-fed group (p < 0.05; Fig-
ures 3 and 4). In rats treated with RES-CMCS (25
and 50 mg/kg.b.w.) and metformin (500 mg/kg.b.w.),
the level of leptin gene expression was significantly
suppressed, while GLUT-4 gene expression level was
markedly increased, in comparison with the HFD
control group (p < 0.05). Agarose gel electrophoresis
images of GLUT-4, leptin, and beta-actin genes am-
plified in adipose tissue are shown in Figure 5.
Photomicrographs of H&E-stained liver sections
show the normal organization of hepatic parenchyma
in the control group (GT1) and groups II & III; this
consists of radially arranged hepatic lobules around
the central veins, portal area, and sinusoids. Liver sec-
tions from the HFD group (IV) showed greatly dis-
rupted hepatic parenchyma due to diffuse hydropic
degeneration in hepatocytes (yellow arrows), as well
as narrowed or occluded sinusoids in some sections;
in addition, congested central and portal veins (red
arrows), as well as inflammatory cells in portal ar-
eas (black arrows) were apparent. Liver sections from

the pretreated group (V) showedmild congestion and
fewer inflammatory cells in portal areas (black ar-
rows). Liver sections from the treated group (VI)
showed markedly improved histology (images were
acquired at high magnification [x 400], bar 50; see
Figure 6).

DISCUSSION
Resveratrol is a natural molecule that may be used to
prevent and treat a number of illnesses. However, its
antitumor effectiveness is limited by its low stability
and cellular bioavailability. To improve its stability
and bioactivity, researchers have employed twometh-
ods, one producing a resveratrol peracetate ester37

or resveratrol-docosapentaenoic acid ester38 and an-
other using nanocarriers such as nanoliposomes39or
RES-CMCS25. Lipophilic resveratrol prodrugs are
created as a result of chemical alteration and require
chemical cleavage to release nonencapsulated resver-
atrol; however, encapsulated substances can leak out
of nanoliposomes due to instability. These issues do
not apply to RES-CMCS, which is frequently utilized
in pharmaceutical and nutraceutical research.
Chitosan requires certain features for ionic contact
with resveratrol:

1. Groups capable of forming strong hydrogen
bonds (-OH, -COOH).

2. High molecular weight.
3. Chain flexibility.
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Figure 6: Microscopic pictures of H&E-stained liver sections showed the normal organization of hepatic
parenchyma consisted of radially arranged hepatic lobules around central veins (CV), normal portal area
(PA) and sinusoids (S) in the control group (GP1), or groups received drug only (GP3&GP4). Liver sections
showed greatly disrupted hepatic parenchyma due to diffuse hydropic degeneration in hepatocytes (yellow ar-
rows), narrowed or occluded sinusoids with congested central veins (CV) and portal veins (red arrows) in (GP2).
Liver sections from the treated groups (GP5&7) showed partially disrupted hepatic parenchyma due to decreased
severity of hepatocytes degeneration and congestion. Liver sections from the treated group (GP6) showedmildly
disrupted hepatic parenchyma due to lesser degrees of hepatocytes degeneration and congestion. High magni-
fication X: 400 bar 50

4. Mucus-spreading capabilities due to surface en-
ergy features.

The presence of lone pairs of electrons in trans-
hydroxyl resveratrol groups facilitates the formation
of hydrogen bonds with the amino groups in chitosan
(Figure 1).
The infrared spectrum of raw resveratrol powder
showed a phenol hydroxyl group absorption peak at
3252 cm−1 as well as benzene ring absorption peaks
at 2827 and 2920 cm. The infrared spectrum of

the chitosan-coated resveratrol (RES-CMCS) demon-
strated that a distinctive absorption peak emerged
at the same place, while the resveratrol absorption
peakwasmissing, indicating that resveratrol had been
completely coated in chitosan.
Our findings are consistent with previous studies
showing that adding chitosan in the presence of
tripolyphosphate increased particle size. The polydis-
persity index (PI) was also employed to measure the
uniformity or dispersity homogeneity of the nanopar-
ticles, showing a value of 0.623 for RES-CMCS. The
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current data show heterogeneous dispersion of RES-
CMCS25. Furthermore, resveratrol has been shown
to be better protected from trans-to-cis isomerization
in the presence of proteins than in the free form40–43.
The size of the RES-CMCS particles was measured in
this study (Figure 2).
Our study showed an entrapment efficiency of 85.46%
for RES-CMCS, thus demonstrating a satisfactory
level of trapping of resveratrol in nanoparticles
(greater than 70%). At pH 7, the NH3+ group in
chitosan is deprotonated, resulting in a negatively
charged NH2 group. Additionally, the negatively
charged hydroxyl group of resveratrol can no longer
bind to the NH2 group of chitosan, resulting in the
release of resveratrol from nanoparticles.
Obesity has been related to the development of major
human ailments, such as heart disease, diabetes, and
cancer. In humans and animals, increased consump-
tion of high-calorie (energy as well as fat) foods pro-
motes fat accumulation, weight gain, and adiposity 44.
Nutritional supplement-based over-the-counter ther-
apies are popular, especially for obesity and body
composition. Obesity treatments are targeted at in-
hibiting dietary fat digestion and absorption45.
The antiobesity effects of RES-CMCS were investi-
gated using rats fed an HFD as a model of obese
type II diabetes46. RES-CMCS showed antiobesity ef-
fects, significantly suppressing the increases in body
weight (Table 4). Furthermore, RES-CMCS reduced
the levels of plasma glucose and insulin levels ob-
served in the HFD group. Although there is no di-
rect evidence that RES-CMCS affects insulin release
in obese diabetic rats, activation of β -cell electrical
activity by RES-CMCS could potentially stimulate in-
sulin release. This result is consistent with previous
findings47.
The antiobesity effects of RES-CMCS were discov-
ered to significantly reduce the observed increases
in plasma lipid content (Table 6). Additionally, fat
build-up was reduced, indicating that the treatment
suppressed TG, TC, and HDL-C. Apo-B-carrying
lipoprotein fractions are assumed to be responsible for
cholesterol deposition in atherosclerotic plaques47.
Therefore, this change could be attributable to a de-
crease in cholesterol as well as triacylglycerols, which
would be beneficial clinically.
Our results were in agreementwith those of El Gizawy
et al.47, who found that dietary resveratrol supple-
mentation lowered the levels of low plasma density
lipoprotein, very low-density lipoprotein, and total
cholesterol in liver rats. Lower levels of plasma choles-
terol as well as triacylglycerol-fed rats may be con-
nected to changes in the activity of two essential en-

zymes in cholesterol metabolism, HMG-CoA reduc-
tase and cholesterol 7-hydroxylase. Although the ac-
tivity of HMG-CoA reductase was not investigated
in this study or earlier resveratrol studies, Hussein46

hypothesized that activation of hepatic cholesterol-
7-hydroxylase activity could mediate the cholesterol-
lowering effect. Additionally, according to Jung
et al.48, polyphenols reduce the activity of hepatic
HMG-CoA reductase in type II diabetic mice.
We also showed that the HFD control group had sig-
nificantly higher liver TBARS levels but lower GSH
and SOD levels. Hyperglycemia induces oxidative
stress by inducing the production of reactive oxygen
species (ROS). ROS cause organ harm in systems in-
cluding the heart and liver, and oxidative damage is
often more severe in diabetic patients46. Antioxidant
enzyme activity in the livers of HFD-fed rats was nor-
malized to cholesterol and triacylglycerol levels. It is
possible that enhancing the levels of these enzymes in
the liver through the action of the tested substances
helped preserve the antioxidant equilibrium in HFD-
fed rats. According to several in vivo and in vitro
investigations, resveratrol reduced lipid peroxidation
and enhanced the activities of antioxidants such as
SOD, GSH, GST, and GPx in a variety of malignant
disorders of various bodily organs46,47.
The activity of hepatic GSH and SOD is frequently el-
evated in rats fed an HFD as a result of increased di-
etary cholesterol and triacylglycerols. Resveratrol has
been found to protect against nicotine-induced lung
damage by altering the degree of lipid peroxidation
as well as boosting the antioxidant defense system by
drastically reducing levels of ascorbic acid, vitamin
E, GSH, GPx, and SOD23. The results, which exam-
ined the effects of RES-CMCS on lipid profile as well
as liver antioxidant enzymes in hypolipidemic rats,
found that an HFD weakened endogenous antioxi-
dant defense systems. In addition to having a strong
antiobesity impact, dietary RES-CMCS significantly
reduced oxidative stress, as evidenced by the replen-
ishment of depleted antioxidant molecules as well as
decreased antioxidant enzyme activity.
One of our key findings was that RES-CMCS supple-
mentation in obese rats induced significant changes in
leptin and GLUT-4 expression in adipose tissue, im-
plying that astaxanthin mediates its biological effects
through at least one of these pathways.
Leptin plays an essential role in reducing TG build-up
in the liver and skeletal muscle through direct activa-
tion of AMPK49, resulting in increased fatty acid oxi-
dation. Leptin resistance, on the other hand, has been
linked to a reduction in leptin-mediated JAK-STAT
signaling and activation of SOCS350. As a result, the
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observed hypertriglyceridemia and hepatic steatosis
caused by fructose in the current study could have
been due to a decrease in hepatic fatty acid catabolism
caused by leptin resistance. To our knowledge, the an-
tiobesity effects of RES-CMCS in obese diabetic rats
fed an HFD have not been previously documented.
We have previously shown that resveratrol boosts
GLUT4 protein expression in muscle from diabetic
rats via a mechanism involving increased Slc2a4 gene
expression. We hypothesized that this was connected
to the impact of resveratrol on SIRT1, which was
enhanced in muscle nuclei. Activation of SIRT1 by
resveratrol is linked to the deacetylation of PPAR-G-
coactivator 1 (PGC1)51,52, which is also a powerful
enhancer of Slc2a4 gene transcription53. Further-
more, deacetylation of the Slc2a4 gene promoter by
SIRT1 cannot be ruled out; enhancer factor activity
is also hampered. Together, these mechanisms may
explain how resveratrol increases Slc2a4/GLUT4 ex-
pression via SIRT1.

CONCLUSION
In this investigation, we generated spherical resvera-
trol nanoparticles using low viscosity chitosan and as-
sessed their characteristics by several methodologies.
Furthermore, the current study showed that RES-
CMCS had potent antiobesity and antioxidant effects
in obese rats by modulating glucose, lipid profile, in-
sulin, and oxidative stress indicators, as well as leptin
and GLUT-4 gene expression. Overall, our findings
suggested that RES-CMCS could be a promising novel
antiobesity and antidiabetic therapy.

ABBREVIATIONS
GLUT-4: glucose transporter-4, GSH: reduced glu-
tathione, HDL-C: HDL- cholesterol, PA: peak area,
RES-CMCS: Resveratrol-carboxymethyl chitosan,Rt:
retention time, RT-PCR: real-time PCR, SOD: super-
oxide dismutase, TBARS: thiobarbituric acid reactive
substances, TC: total cholesterol, TG: Triglyceride
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