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ABSTRACT
Breast cancer is the most common type of cancer in women worldwide and is the type of cancer
with themost frequent highmortality rate for women in 110 countries. Treatmentmethods offered
can have both short- and long-term effects on mobility, function, and quality of life. Improvement
in treatment is essential to increase the survival rate and life expectancy. Macrophages in the breast
cancer tumor microenvironment (TME) are known as tumor-associated macrophages (TAMs) and
are themost common leukocyte population inmammary cancer. TAMs exhibit a phenotype similar
to that of M2-like macrophages and secrete a variety of chemokines, cytokines, and growth factors,
such as CCL2, CCL18, IL-10, VEGF, and PDGF, which are involved in cancer progression and metas-
tasis and trigger drug resistance during cancer therapies. Hence, high infiltration of TAMs in breast
cancer patients is closely associatedwith a poor clinical prognosis. Mesenchymal stromal/stemcells
(MSCs) have been demonstrated by various studies to modulate immunomodulatory responses
and reprogramming of TAMs to M1-like macrophages. MSCs skew naïve macrophages to a proin-
flammatory M1-like polarized state, which can alter the TME landscape. Hence, reprogramming
TAMS to an M1-like phenotype with MSCs is a good strategy to enhance commonly used im-
munotherapies for the improvement of clinical outcomes among cancer patients. This present
review discusses the potential of targeting TAMs by reprogramming macrophages using MSCs to
increase antitumor responses in breast cancer.
Keywords: Breast cancer, Tumor microenvironment, Tumor-associated macrophages, Mesenchy-
mal stromal/stem cells

INTRODUCTION
Cancer is one of the primary causes of death from
noncommunicable diseases (NCDs) along with car-
diovascular and respiratory disorders. NCDs are be-
coming the world’s leading cause of death and mor-
bidity worldwide1. People of all ages are at risk of de-
veloping NCDs even before birth, even though these
diseases are commonly associated with elderly peo-
ple. NCDs can begin during infancy and progress
throughout childhood, adolescence, and old age2.
When both sexes are considered, female breast can-
cer exceeded lung cancer as the most diagnosed can-
cer worldwide in 2020, according to Sung et al., with
an expected 2.3 million new cases (11.7%) followed
by lung cancer (11.4%)3. Female breast cancer is also
the fifth leading cause of cancermortality globally and
ranks first in mortality among women in 110 coun-
tries3. Transitioned countries have 88% higher in-
cidence rates than transitioning countries (55.9 and
29.7 per 100,000, respectively), but a 17% greater
mortality rate is recorded for women in transitioning
countries than women in transitioned countries (15.0

and 12.8 per 100,000, respectively)3. Diagnosis at a
younger age has been linked to a poor clinical out-
come, possibly due to being of a more aggressive sub-
type, such as triple-negative or HER2-positive breast
cancer, or due to delayed discovery and presentation
at an advanced stage4.
Breast cancer is not only limited to females but also
occurs in men, which account for relatively 1% of all
breast cancer cases, and there is still limited knowl-
edge on the risk in men5. However, breast cancer
cases among men are commonly hormone receptor-
positive and may be more sensitive to hormonal ther-
apy 5. Surgery, radiation therapy (RT), chemotherapy
(CT), endocrine therapy (ET), and targeted therapy
are common treatments for breast cancer. Adjuvant
therapy is normally introduced after surgery to ensure
that the respective patients fully recover andminimize
the risk of metastases6. Short- and long-term effects
may occur due to the side effects of these therapies,
which can affect the mobility, function, and quality of
life of the patient. Local trauma from surgery or RT
may cause swelling, fibrosis, nerve and muscle dam-
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age, resulting in pain, loss of shoulder range ofmotion
and strength, and lymphedema7,8. Peripheral neu-
ropathy, osteoporosis, and fatigue were also reported
in patients following CT7,8. Increased survival rates
and life expectancy of breast cancer patients can be
achieved with early detection and increased effective-
ness of current treatment approaches7,8.
Nontumor cells in the tumor microenvironment
(TME) can develop different mutations during can-
cer progression andmay cause drug resistance during
cancer therapies9,10. The nontumor cells in the TME
can also change several biological properties when
they are coopted by tumor cells since there is a delicate
balance between their inhibitory action and tumor-
promoting factors9,10. Furthermore, various types of
cells are found in the TME, and their compositions
differ based on tumor type. Tumor cells, blood ves-
sels (endothelial cells and pericytes), lymphatic ves-
sels (lymphedothelial cells), adipocytes, fibroblasts,
lymphocytes, and various stem and progenitor cells
reside in the TME11. The population of macrophages
is relatively high in the breast cancer TME and is iden-
tified as tumor-associated macrophages (TAMs). In
breast cancer, macrophages can make up as much
as 50% of the total cell mass. The high density of
TAMs promotes breast cancer metastasis and cor-
relates with poor clinical prognosis in breast can-
cer patients12,13. Intense research has been carried
out in recent years to target TAMs as therapeutic
strategies to prevent tumor progression and metas-
tasis12,13. Coculturing mesenchymal stromal/stem
cells (MSCs) with naïve macrophages skewed them
to an M1-like state and elicited pro-inflammatory re-
sponses14. However, manipulation of macrophage
types by MSCs necessitates extensive research, espe-
cially on the polarization states ofmacrophages in dif-
ferent disease platforms14. Therefore, the current re-
view aims to discuss the potential of reprogramming
macrophages usingMSCs to target TAMs in the breast
cancer TME.

TUMOR-ASSOCIATED
MACROPHAGES (TAMs)
Background
Thehigh abundance of immune cells in the tumorwas
initially identified by Dr. Rudolf Virchow in 1983,
who suggested a link between inflammation and the
origin of cancer12. These immune cells secrete var-
ious cytokines, chemokines, growth factors, and in-
flammatory mediators12. Macrophages are cells of
innate immunity, which is the first line of defense
against pathogens10. Macrophages regularly patrol

and monitor their surroundings to engulf any for-
eign pathogens and are also involved in the antitu-
mor response, as they can identify nonself cells and
phagocytize them10,15. Macrophages and dendritic
cells (DCs) are potent antigen-presenting cells (APCs)
that engulf, process, and present foreign antigens as
peptides that bind with either major histocompati-
bility complex (MHC) class I or II on their cell sur-
faces16. T-cell activation is triggered when the T-
cell receptor (TCR) expressed by CD4+ T cells recog-
nizes the peptide-MHC complex presented by APCs
and the engagement of costimulatory molecules, ei-
ther B7-1 or B7-2, with CD28, which leads to IL-2 cy-
tokine signaling16. Upon activation, T cells undergo
proliferation and acquire effector functions, which in-
clude the production of effector molecules that me-
diate cytotoxicity, such as perforin and granzymes16.
Immunodeficiency, host tissue damage in the form
of autoimmunity, malignancy, and failure to elimi-
nate invading pathogens can all be caused by poor
communication between macrophages and T cells16.
TAMs commonly originate from circulating mono-
cytes recruited to the tumor site, which then differ-
entiate into macrophages17. Circulating monocytes
are derived from hematopoietic stem cells in the bone
marrow 17. In addition, TAMs are also derived from
embryos, such as tissue-resident macrophages in the
liver (Kupffer cells), lungs (alveolar macrophages),
and brain (microglia)17. This group of TAMs resides
in the tumor tissue and maintains itself through self-
renewal17.

Phenotype of TAMs
Macrophages that infiltrate the tumor sites normally
exhibit antitumoral properties but are likely to be-
come anti-inflammatory and protumorigenic cells
once they are populated in the TME18. Macrophages
can be activated into either classically activated
macrophages (M1 macrophages) or alternatively ac-
tivated macrophages (M2 macrophages) depending
on the immune response that was induced19. The
classification of TAM subtypes is essential to allow
the study of how different TAM subtypes affect the
regulation of gene expression and modulate the bi-
ological behaviors of cancer cells19. TAMs are ex-
ceedingly plastic and heterogeneous, and their po-
larization reflects a continuum. As a result, polar-
ized TAMs are now referred to as M1-like or M2-like
macrophages, rather than M1 or M2 macrophages,
which are oversimplified terms20. Macrophages
can be activated to the M1-like phenotype follow-
ing stimulation by interferon-γ (IFN-γ), lipopolysac-
charide (LPS), tumor necrosis factor-alpha (TNF-α),
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and granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), while M2-like macrophages are acti-
vated by macrophage colony-stimulating factor (M-
CSF), IL-4, IL-10, IL-13, IL-33, and/or transforming
growth factor-beta (TGF-β ) (Figure 1)21. M2-like
macrophages can be further induced into different
subtypes of M2a, M2b, M2c, and M2d under the in-
fluence of the respective stimuli (Figure 1)22. M1-like
macrophages secrete proinflammatory cytokines such
as IL-1α , IL-1β , IL-6, IL-12, TNF-α , and type I in-
terferons (IFN), enabling them to participate in im-
mune stimulation and defense against microbial in-
fections (Figure 1)23. M2-like macrophages produce
anti-inflammatory cytokines such as IL-4, IL-6, IL-10,
IL-13, and TGF-β that exhibit anti-inflammatory re-
sponses and can repair damaged tissue (Figure 1)24.
The plasticity of TAMs enables them to switch be-
tween M1-like and M2-like macrophages depending
on their respective microenvironment25. However,
TAMs possess a phenotype similar to that of M2-
like macrophages, which promotes tumor growth and
metastasis26. Thus, converting TAMs into anM1-like
phenotype, which has an antitumor response, may al-
ter theTME landscape, thereby improving cancer out-
comes26.

TAMS IN THE BREAST CANCER TME
AND THERAPEUTIC POTENTIAL
Breast cancer TME
The TME can generally be divided into cellular and
acellular components. In addition to tumor cells, a
variety of cells, such as fibroblasts, endothelial cells,
adipocytes, immune cells and neuroendocrine (NE)
cells, have also been identified in the TME28. The
acellular components consist of extracellular matrix
(ECM), extracellular vesicles (EVs), and cytokines
surrounding these cells28. Interaction between ma-
lignant and nonmalignant cells forms the TME29.
Vascular endothelial cells (ECs) and pericytes, lym-
phatic ECs, fibroblasts, myofibroblasts, and differ-
ent bone marrow-derived cells, such as macrophages,
neutrophils, mast cells, myeloid-derived suppres-
sor cells (MDSCs), and mesenchymal stromal/stem
cells (MSCs), are part of the stromal cells that are
nonmalignant(Figure 2)29.
Tumor cells in the TME recruit a wide array of
cells that have bidirectional interactions with tumor
cells31. ECs directly interact with tumor cells and are
involved in angiogenesis, which contributes to tumor
growth andmetastasis31. Breast tumor progression is
dictated by the balance between protumor and antitu-
mor immune responses31. An increasing number of

immune cells, such as CD4+ T helper (Th) cells and
CD8+ cytotoxic T cells (CTLs), in the TME is corre-
lated with a good prognosis in some cancers, but the
presence of TAMs augments tumor growth32. Other
T-cell subsets found in solid tumors, such asTh2 cells,
T regulatory (Treg) cells, and Th17 cells, are involved
in tumor promotion, progression, or metastasis33.
The presence of other cells, such MDSCs, tumor-
associated neutrophils (TANs), and cancer-associated
fibroblasts (CAFs), also supports tumor growth33.
The TME has started to gain popularity in recent re-
search that focuses on cancer treatment. Understand-
ing how the TME changes throughout tumor devel-
opment could lead to the development of treatment
techniques that target tumors at a certain time in their
evolution34.
Fibroblasts become activated and differentiate into
myofibroblasts upon tissue insult to stimulate the
recovery of an injured site via the production of
ECM components35. Myofibroblasts finally disap-
pear when a wound heals, primarily due to apop-
tosis35. Apart from resident fibroblasts, CAFs can
also be generated from other cells that are specifically
mesoderm-derived, such as pericytes, adipocytes,
hematopoietic cells,MSCs, epithelial cells, andECs36.
The presence of CAFs in the TME stimulates tumori-
genesis through the production of growth factors that
elicit angiogenesis, epithelial-mesenchymal transition
(EMT), immunosuppression, tumor cell proliferation
and invasion, and metastasis37. The significance of
adipocytes in the breast TME arises as there is a high
concentration of fatty cells compared to other organs
that characterize the tissue and form tumoral mam-
mary adipose tissue (MAT)38. Adipocytes can stim-
ulate tumor cell growth and survival, crosstalk with
the surrounding cells, and release fatty acids, which
are metabolized by tumor cells and used as an energy
source39. In addition, tumor-associated adipocytes
(TAAs) aid in the recruitment of macrophages to the
TME and their polarization into the M2-like configu-
ration via CCL2, IL-1β , and CXCL1239. Adipose tis-
sue can be classified into white, brown, and brite ac-
cording to origin, structure, and function40. White
adipocytes are the primary energy storage cells, while
brown adipocytes can produce heat40. The origin
and function of brite adipocytes are less clear and are
currently being debated40. Brite adipocytes have the
mixed characteristics of both white and brown adi-
pose tissue40. Accumulated fatty acids released by
dysfunctional adipose tissue will be taken up into the
tumor and useful for energy regeneration through
β -oxidation, as fatty acids are the major source of
ATP in the tumor41. In addition, adipose tissue
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Figure 1: Phenotype of macrophages. Macrophages could be classified into two subtypes namely M1-like
macrophages and M2-like macrophages. Meanwhile, M2-like macrophages can be sub-classified into M2a, M2b,
M2c, andM2d phenotypes which are differentiated based on their secretion of respective cytokines, chemokines,
and receptors. All these macrophages’ phenotypes have different functions respectively. M1-like macrophages
elicit proinflammatory responses and are closely related to the Th1 responsewhileM2-likemacrophages promote
tropism and tissue tolerance. Furthermore, M2a is modulating tissue repair and rehabilitation, and is associated
with Th2 responses; M2b is usually involved in immunoregulation; M2c plays a critical role in phagocytosis, and
M2d contributes to angiogenesis. The figure was adapted from Wang et al. 27.

residual may also contribute to drug resistance dur-
ing chemotherapy 42. Activated myeloid progenitor
cells differentiate into MDSCs following the secretion
of proinflammatory cytokines during chronic inflam-
mation43. These cells either elicit the recruitment of
Treg cells into the TME or differentiate into TAMs43.
MDSCs in the breast TME promote cancer progres-
sion by supporting EMT of tumor cells43. MSCs are
part of nontumor cells recruited into the inflamma-
tory TME44. These recruited MSCs preserve their
counterpart naïve MSC differentiation capacity and
stromal surface markers, but these tumor-associated
MSCs (TA-MSCs) assist tumor growth44. TA-MSCs
can recruit immunosuppressive cells, support EMT
and tumor cell proliferation, and increase the propor-
tion of cancer stem cells45.
TheECMis a collection of cell-secretedmolecules that
provides biochemical and structural support to cells,
tissues, and organs37. The mechanical properties of
the ECM are determined by the structural require-
ments37. Apart from exerting an effect on cell behav-
ior, ECM may also contribute to tumor progression
based on the composition, stiffness, topography, and
microarchitecture of the ECM37. The ECM plays a

role in evolution and cancer spreading because the ad-
hesion of the cell to the ECM controls the movement
in and out from the TME46.

TAMs in the TME induce breast cancer pro-
gression and resistance to treatment
Hypoxia is a primary microenvironmental stressor
that is associated with tumor progression-related phe-
nomena such as tumor cell proliferation, cell mi-
gration, neoangiogenesis, and metastatic transforma-
tion47. The rapid proliferation of transformed cells
triggers hypoxia, a common feature of the TME at a
very early stage of tumor development48. Hence, tu-
mor neoangiogenesis causes rapidly dividing tumor
cells to overcome hypoxia for growth and survival48.
Macrophages are known to prefer the hypoxic regions
in which the hypoxic microenvironment is predicted
to have the ability to prime macrophages to serve
protumoral functions49. TAMs immobilize between
transient (avascular and nonnecrotic) and prenecrotic
areas of human breast tumors, as well as prostate,
endometrial, ovarian, and lung carcinomas, accord-
ing to clinical data50. A greater number of M2-
like TAMs have been found in human endometrial,
breast, prostate, and ovarian carcinomas51. Based
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Figure 2: Breast cancer TME. Breast cancer TME is populated not only by cancer cells but also composed of a va-
riety of lymphocytes, myeloid cells, andmesenchymal cells including fibroblasts, pericytes, and cancer-associated
fibroblasts. The complex crosstalk between these types of cells with cancer cells in TME dictates the immune
infiltration, breast cancer progression, and anti-cancer responses. The figure was obtained from Yan et al. with
permission from BMC 30.

on an in vitro study by Tripathi et al., certain solu-
ble factors are released by hypoxia-primed breast can-
cer cells, whichmay assist in the directionalmigration
of macrophages51. Polarization of THP-1-derived
macrophages to M2-like macrophages was observed
after incubation with conditioned medium from hy-
poxic breast cancer cells. The results from the study
suggest the possibility that Oncostatin M and Eotaxin
stimulate the infiltration of macrophages andM2-like
polarization51.
A study by Li et al. revealed that endocrine-resistant
tumor cells promoted M2-like macrophage polariza-
tion, while M2-like polarized TAMs enhanced en-
docrine resistance in tumor cells, producing a posi-
tive feedback loop between TAMs and breast cancer
cells52. Macrophages cultured in conditioned media
of tamoxifen-resistant cells (MCF7-R) significantly
enhance the polarization of macrophages to M2-like
cells compared to conditionedmedia from tamoxifen-
sensitive cells (MCF7-S)53. By changing amino acid

metabolism in the environment, endocrine-resistant
breast cancer cells stimulate the mTORC1-FOXK1
pathway in macrophages, boosting M2-like polariza-
tion and CCL2 production53. Secretion of CCL2 by
TAMs activates the PI3K/Akt/mTOR signaling path-
way and promotes endocrine resistance52. In ad-
dition, CCL2 stimulates monocyte and macrophage
aggregation in the TME (Figure 3)52. The transi-
tion from monocytes to TAMs stimulates the devel-
opment of an endocrine-resistant milieu52. Resis-
tance to tamoxifen, a common worldwide endocrine
therapy, may limit the effectiveness of treatment us-
ing endocrine therapy in breast cancer53. A feed-
back loop between TAM-released CCL2 and activated
PI3K/Akt/mTOR signaling in cancer cells could be
suggested as the mechanism of resistance54. Apart
from that, aggregation of monocytes into the TME
by CCL2 can also promote the formation of the
endocrine-resistant microenvironment52.
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Figure3: The roleofTAMs inTMEby inducingbreast cancerprogressionandresistance to treatment. Cancer
hallmarks are biological abilities gained during themultistep evolution of humanmalignancies. TAMs secrete var-
ious cytokines in breast cancer TME which can either directly or indirectly promote cancer growth and resistance
in treatment via immunosuppression, angiogenesis, EMT, intravasation, and monocytes aggregation in TME.

CCL18 is another chemokine secreted by TAMs that
can promote breast cancer cell metastasis55. Accord-
ing to a study by Lin et al., infiltration of TAMs se-
creting CCL18 is directly associated with microvas-
cular density in human breast invasive ductal carci-
noma, suggesting the possible role of CCL18 in pro-
moting angiogenesis (Figure 3)56. VEGF is another
angiogenic factor that plays a significant role in can-
cer metastasis57. TAMs and several other TME cell
types have been shown to release VEGF57. Little et al.
showed that increased VEGF secretion from IL-4/IL-
13 stimulated M2a macrophages, while both CCL18
and VEGF promoted breast cancer migration and in-
vasion, possibly as a preangiogenic step57. VEGF has
well-defined roles in promoting tumor cell migration
through its stimulation57. PDGF, metalloproteinases
(MMPs), TGF-β , and adrenomedullin (ADM) are
other proangiogenic factors secreted by TAMs that
can induce neovascularization (Figure 3)58.
In murine breast tumor models, Fang et al. showed
that TAMs are more immunosuppressive via inhi-
bition of T-cell proliferation compared to tumor-
infiltrating MDSCs (tiMDSCs)59. The study also
showed that TAMs express higher IL-10, Arginase
1, CCL17, and CCL22, while tiMDSCs have higher
gene expression of proinflammatory factors such as
IL-12α , IL-1β , and CXCL11 and are more angio-
genic59. As a result, specifically targeting TAMs

rather than tiMDSCsmight improve the immunosup-
pressive TME and boost cancer immunotherapy ef-
fectiveness59. The ratio of tiMDSCs/TAMs is lower
in established tumors than during tumor initiation,
whichmay be due to the hypoxic TME,which encour-
ages the differentiation of tiMDSCs into TAMs59. IL-
10 produced by macrophages suppresses the expres-
sion of IL-12 by DCs, which reduces CD8+ T- cell
infiltration and activity and increases chemotherapy
resistance (Figure 3)60. In addition to drug resis-
tance, IL-10 secreted by TAMs can also be respon-
sible for increasing tumor survival by inhibiting NK
and T-cellcell cytotoxic effects61. Yang et al. showed
elevated bcl-2 gene expression and STAT3 signaling
in breast tumor cells62. This suggests the possibil-
ity of TAMs promoting drug resistance via the IL-
10/STAT3/bcl-2 signaling pathway 62.
EMT refers to the change in tumor cells from epithe-
lial to mesenchymal features, which increases tumor
cell motility and invasive capacities63. TAMs also
play a role in this process by secreting inflammatory
factors such as TNF-α and IL-6 (Figure 3)63. These
inflammatory factors stimulate EMT by activating the
TGF-β or NF-κB pathways63. TNF-α also enhances
EMT by activating ROS63. IL-6 accomplishes EMT
by activating the JAK/STAT3 pathway 63.
Another study by Sousa et al. demonstrated that
ex vivo breast cancer cell-secreted factors modulated
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macrophage differentiation into the M2-like phe-
notype64. MDA-MB-231, which produces a large
amount ofM-CSF, skewsmacrophages toward amore
immunosuppressive subtype of M2c64. Addition-
ally, increased CD200R signaling was observed in
M2amacrophages differentiated in the presence of IL-
4 and MDA-MB-231 conditioned medium64. Can-
cer cells are among cells that express CD200 other
than MSCs, thymocytes, activated T cells, B cells, and
DCs64. The CD200-CD200R interaction can stim-
ulate an immunosuppressive signal by reducing in-
flammatory cytokines secreted by macrophages and
indirectly increasing Treg and reducing effector T-
cell numbers, which in turn promote tumor progres-
sion64.
A study by Qin et al. reported a possible relation-
ship between stress and epinephrine (E), a stress hor-
mone with the progression of breast cancer growth
via the transformation of macrophages from M1 to
M265. Apart from accelerating tumor growth, the el-
evated presence of E in the TME can also promote
the polarization of macrophages into the M2 phe-
notype, which in turn can support tumor progres-
sion65. The influence of the TME on the transfor-
mation of macrophages to M2 macrophages might be
mediated by the expression of the ADRβ2 receptor,
as the expression of the ADRβ2 receptor is positively
correlated with the expression of M2 macrophages
(CD206+) in human breast cancer tissues65.
Although the involvement of macrophages in tumor
cell entry into the vasculature has been studied in vitro
and in vivo, the mechanism by which macrophages
particularly alter tumor cell intravasation is still un-
clear66. In a study using patient-derived breast tumor
cells, Roh-Johnson et al. discovered thatmacrophages
could increase tumor cell intravasation by activating
the RhoA signaling pathway, leading to the develop-
ment of invadopodia66. Tumor cells can then in-
travasate by penetrating the basement membrane of
the vasculature (Figure 3)66.

The therapeutic value of macrophages in
breast cancer
A high density of TAMs in breast cancer patients
is associated with a poor survival rate, while in-
creased TAM infiltration is linked to a negative hor-
mone receptor status and a malignant phenotype67.
Hence, TAM invasion may be a new predictive fac-
tor in patients with breast cancer67. A prognostic
biomarker is a clinical or biological trait that pre-
dicts a patient’s health outcome, such as disease re-
currence, regardless of treatment68. A high level

of TAM infiltration in invasive breast cancer (IBC)
is linked to poor clinical and pathological prognos-
tic factors, such as high histological grade, large tu-
mor size, ER negativity, PR negativity, and a high
Ki-67 proliferating index69. Additionally, it is cru-
cial to investigate the location of TAMs as a prog-
nostic marker. In the tumor stroma, a higher num-
ber of macrophages (CD11c+ or CD163+) was linked
to a larger tumor size, while CD163+ macrophages
were found in the tumor nest and became an inde-
pendent predictivemarker for shorter overall survival
(OS) and disease-free survival (DFS)69. In breast can-
cer, high TAM infiltration is linked to EMT and can
be used as a negative prognostic indicator for pa-
tients with triple-negative breast cancer (TNBC)70.
TNBC patients with CD163+ TAM infiltration and
low E-cadherin levels had a higher risk of aggres-
sive characteristics, such as recurrence, histologic dif-
ferentiation, and lymph node metastasis70. A prior
study showed that patients with low CD163+TAM
density had considerably higher progression-free sur-
vival (PFS) and overall survival (OS) than patients
with high CD163+ TAM density 71. In addition
to CD163, TAM-related markers such as CD68 and
MMP-9 can also be used as breast cancer biomarkers,
butmacrophage activitymarkers are linked to survival
differently in ER+and ER−cancers72. MMP-9 and
CD163 have long been associated with the M2 phe-
notype; however, Pelekanou et al. discovered that this
association does not always translate into a worse out-
come in breast cancer72. In ER− cancers, high CD68
expressionwas associatedwith poor survival, whereas
high CD163 expression was associated with improved
OS73. On the other hand, high MMP-9 expression
in CD68+/CD163+ TAMs was linked to worse OS in
ER+ tumors but not in ERcancers73. Markers associ-
ated with M2-like TAMs that support tumor invasion
and progression are potentially useful as prognostic
markers for breast cancer patients.
Current gene assays employ proliferation-related
genes that are restricted to tumor cells to stratify pa-
tients into different risk groups but not prognosis-
related immune cell marker genes73. Li et al. devel-
oped a prognostic macrophagemarker gene signature
(MMGS) that utilizes macrophage-related genes such
as SERPINA1, CD74, STX11, ADAM9, CD24, NFK-
BIA, and PGK173. TheMMGS had a higher ability to
discriminate between high-risk and low-risk groups
in the hormone receptor-positive and HER2-negative
subgroups73. However, further study is required
to investigate the interaction between macrophage
marker genes and tumor-specific genes73.
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Immunotherapy has emerged as the most promis-
ing cancer treatment, with a variety of cancer im-
munotherapy strategies established to date, such
as adoptive cellular immunotherapy, tumor vac-
cines, antibodies, immune checkpoint inhibitors, and
small-molecule inhibitors74. The emergence of im-
munotherapy is due to the limitations and scarcity of
standard cancer treatments74. Unfortunately, multi-
ple immunosuppressive signals inside the TME limit
the efficiency of the current immunotherapy tech-
niques75. As a result, novel ways to effectively re-
model the different immunosuppressive cells in the
TME and elicit additional antitumor immunity are
urgently required75. Targeted treatments that act
on macrophages may provide innovative therapeu-
tic techniques, in addition to acting as biomarkers76.
Recent strategies to target macrophages are focusing
on macrophage depletion, inhibition of monocyte re-
cruitment in tumor tissues, and reprogramming of
TAMs toward an antitumor phenotype58.
Colony-stimulating factor 1 receptor (CSF-1R) tar-
geting is one of the strategies investigated to deplete
and/or reprogram TAMs by inhibiting monocyte re-
cruitment in tumors77. Depending on the organ-
specific properties of these cells, the impact of the
technique as a therapeutic approach for cancer pa-
tients may vary substantially, as discussed by Cannar-
ile and colleagues77. PLX3397 (pexidartinib) is the
first oral and clinically tested nonspecific CSF-1R ki-
nase inhibitor. PLX3397 is safe and effective in re-
ducing TAMs in a variety of solid tumors78,79. M-
CSF and IL-34 are ligands of CSF-1R 80. M-CSF can
recruit monocytes from the circulation and differen-
tiate them into macrophages in the context of can-
cer81. Once recruited to the tumor, factors in the
TME promote their differentiation into TAMs81. In-
hibiting M-CSFR or CSF-1R with PLX3397 reduced
the number of TAMs, circulating nonclassical mono-
cytes, neoangiogenesis, and ascites but did not en-
hance survival, as observed in mesothelioma mouse
models82. A concomitant drop in TAMs and an
increase in CD8+ T-cell numbers and functionality
were observed when paired with an effective DC-
mediated antitumor T-cell response via DC vaccina-
tion, which produced long-lasting tumor responses
and functional antitumor immunity 82. The thera-
peutic efficacy of CSF-1R inhibition as monotherapy
was limited in mesothelioma therefore, further stud-
ies should be carried out to evaluate the efficacy of a
similar strategy in other types of cancers82. Emac-
tuzumab, a monoclonal antibody against CSF-1R,
can selectively deplete immunosuppressive M2-like
macrophages, as observed in patients with advanced

solid tumors, but is inefficient in reprogramming
the remaining macrophages into immunostimulatory
M1-like TAMs83. Depletion of TAMs alone may not
be sufficient to improve the efficacy of breast cancer
treatment but requires combination with cancer im-
munotherapies and/or immunostimulatory agents to
induce an immune response against the tumor82 83.
Increasing the M1/M2 ratio is likely to slow tumor
growth, making it an attractive therapeutic target
technique in cancer research. Salinomycin (SAL)
treatment of the murine breast cancer cell line 4T1
effectively repolarizes TAMs toward the M1 pheno-
type and regresses tumor growth and metastasis84.
SAL is a veterinary antibiotic used to treat coccidio-
sis in chickens and was previously found to selectively
kill cancer stem cells (CSCs)84. Another strategy
that demonstrated repolarization of M2macrophages
toward M1 is by treating 4T1 cells with miR-130-
containing exosomes85. A study by Yin et al. demon-
strated TAM polarization to M1-like macrophages in
the human breast cancer cell line MCF-786. Based on
that study, anemoside A3 (A3), a naturally occurring
Pulsatilla saponin (PS) compound, was shown to in-
duce M0 macrophages and TAMs toward an M1-like
immunogenic phenotype via a TLR4-dependent sig-
naling pathway 86. Hence, targeting reprogramming
TAMs toward an antitumor phenotype may be useful
in preventing tumor invasion andmetastasis in breast
cancer.

REPROGRAMMINGMACROPHAGES
WITH MSCs
Reprogramming of macrophages
The effectiveness of immune defense relies on the
degree of macrophage plasticity, in which how fast
and efficient these cells alter their functional phe-
notype in reaction to the microenvironment and
pathogenic microbes. Based on the present concept
of macrophages, proinflammatory factors such as LPS
and IFN-γ can program the M1-like phenotype to in-
crease the production of proinflammatory cytokines
that activate theTh1 response, facilitate complement-
mediated phagocytosis, and cause type I inflamma-
tion87,88. A similar effect can be observed on theM2-
like phenotype by stimulation of anti-inflammatory
cytokines, which in turn will promote anti-parasitic
immune responses and wound healing processes89.
Reprogramming, also known as polarization or al-
ternate phenotype, is the process of changing the
macrophage phenotype in response to the microen-
vironment or an active pathogen87. However, polar-
ization and alternate phenotypes are phrases that im-
ply a choice between two states and do not accurately
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reflect the true nature of reprogramming87. Repro-
gramming is better suited to explain the formation of
any cell phenotype since it would be more appropri-
ate to consider that the M1-like phenotype has more
M1 markers than M2 markers and vice versa87. Nor-
mally, macrophages can be reprogrammed either to
the M1-like or M2-like phenotype based on the type
of pathogen detected to provide a rapid and appropri-
ate immune response90.
Therefore, the concept of investigating macrophage
plasticity by reprogramming the TAMphenotype into
anM1-like phenotype is emerging as a plausible ther-
apeutic method for cancer treatment. Research by
Wanderley et al. demonstrated that the M2 phe-
notype of TAMs can be reprogrammed by pacli-
taxel into the M1 profile via TLR4 signaling, as ob-
served in murine bone marrow-derived macrophages
(BMDMs)91. Thus, there is a potential need to ex-
plore the reprogramming of macrophages as a strat-
egy to enhance commonly used immunotherapies to
improve clinical outcomes among cancer patients91.
Apart from being targeted for the treatment of dis-
ease, macrophage reprogramming is also now used as
a primary determinant of the progression and/or re-
lapse of diseases92. According to Su et al., high mo-
bility group box 1 (HMGB1), an inflammatory fac-
tor, induces the development of experimental autoim-
mune myocarditis (EAM) by reprogramming infil-
trating macrophages toward the M1-like phenotype
via TLR4-PI3Kγ-Erk1/2 pathways92.

Immunomodulation byMSCs
Mesenchymal stromal/stem cells (MSCs) can modu-
late both innate and adaptive immune responses93.
MSCs adhere to tissue culture plastic and have a
fibroblast-like morphology 94. These cells are mul-
tipotent cells that enable them to differentiate into
a few mesoderm-type lineages, including myogenic,
adipogenic, osteogenic, and chondrogenic lineages94.
MSCs were initially isolated from bone marrow and
later discovered to be able to be isolated from differ-
ent sources, such as adipose tissue, synovial fluid, um-
bilical cord blood, Wharton’s jelly, placenta, and am-
niotic fluid95. MSCs are also able to express specific
markers, such asCD105, CD73, andCD90, with a lack
of expression for CD45, CD34, and CD1493.
Immunomodulatory changes following administra-
tion of MSCs in vivo have been widely explored, but
there is still limited clarification of the cellular and
molecular mechanisms96. However, comparison of
study results is challenging, as different features in
vitro and in vivo are displayed byMSCs depending on

the tissue they originated and different protocols used
for administration of MSCs96. Adipose tissue and
umbilical cord-derivedMSCs are commonly used due
to their accessibility 96. Nonetheless, certain patterns
and pathways are consistent and have been demon-
strated several times in which immunomodulation by
MSCs is mediated by a combination of cell contact-
dependent pathways and soluble factors 96.
Findings from Bartholomew et al., who is a pioneer
in demonstrating the relationship between MSCs and
the immune response, showed that baboon MSCs
(bMSCs) can modify lymphocyte reactivity into allo-
geneic cells in vitro97. In addition, in vivo adminis-
tration of MSCs resulted in increased skin graft sur-
vival97. Following this discovery, there has been in-
tense research focusing on the immune response be-
tween MSCs and various immune cell subsets. MSCs
suppress NK, B cell, CTL,Th1,Th2, andTh17 cells but
support the enhancement of Treg cell number and ac-
tivity 98–100.
Numerous studies have investigated the therapeutic
potential of MSCs for the treatment of numerous dis-
eases, including diabetes and diseases of the bone and
cartilage101–104. Perinatal MSCs become a primary
source of exogenousMSCs to treat cancer due to their
ability to home to tumor locations, their antiprolif-
erative impact on multiple tumor cell lines in vitro,
and their ability to shape the inflammatory niche via
their intrinsic immune regulatory or stimulatory abil-
ities105. Amniotic membrane (hAMSC), umbilical
cord/jelly Wharton’s (UC-MSC/WJ-MSC), chorionic
villi (CV-MSC), and maternal decidua (DMSC) are
used to isolate perinatal MSCs105.

Dual role of MSCs in breast cancer
MSCs have the potential to be used for cell therapy
and tissue engineering, as they are easily extracted and
have unique immunophenotypic and immunoregula-
tory capacities to be used in an allogeneic setting106.
Furthermore, MSCs can migrate in a precise direc-
tion to certain tissues or home, making them ideal
vehicles for targeted tumor therapy 106. However,
the antitumor benefits of MSCs remain debatable107.
This is because MSCs do have anticancer capabilities,
prompting efforts tomodify them for anticancer ther-
apy, but they have also been linked to several path-
ways that contribute to tumor formation108. Under-
standing the dual role of MSCs in tumor cell prolif-
eration is crucial since they have the potential to be
an ideal target for cell treatment in a variety of can-
cers108. Some studies have revealed inhibitory effects
of MSCs, whereas others have indicated protumor ac-
tivity of MSCs, regardless of the type of cancer that
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raised concerns about their clinical application in on-
cology, as discussed by Hmadcha et al.109.
The homing of MSCs from bone marrow and other
sources to tumor sites is induced by the tumors
and secretion of several growth factors, cytokines,
and chemokines in the TME110. Growth factors
(PDGF, SCF, HGF, IGF-1E, and GF), angiogenic fac-
tors (βFGF, HIF1α , and VEGF), chemokines (CCL5,
CCL2, CXCL12, and CCL22), cytokines and inflam-
matory factors (TGFβ , TNFα , IL-8, and IL-1β ) are
among the components that are involved in themech-
anisms of MSC homing to tumor sites110.
Recruited MSCs in the TME are “educated” to de-
velop and differentiate into tumor-associated MSCs
(TA-MSCs) and CAFs111. MSCs can prevent tu-
mor proliferation and facilitate tumor cell apopto-
sis108. However, there are also studies showing that
MSCs can contribute to EMT stimulation, have im-
munosuppressive properties, support tumor vascula-
ture, and increase the proportion of stem cells in tu-
mors108. Tumor start, promotion, progression, and
metastasis have all been linked to TA-MSCs when
exposed to tumor-mediated ”education”44. TA-
MSCs, in general, exhibit differentiation potential
and stromal surface markers similar to those of naïve
MSCs, but they assist tumor growth through similar
mechanisms44. CAFs in breast cancer are involved
in angiogenesis/lymphangiogenesis, ECM remodel-
ing, cancer-associated inflammation, and metabolic
reprogramming, all of which can signal premalig-
nancy 112.
Increased proliferation and metabolic activity of
breast cancer cells were demonstrated following in
vitro coculture of human breast cancer cells with
adipose-derived MSCs, partly due to MSC-derived
microvesicles that are shed in the TME113. For the
first time, Maffey et al. demonstrated that MSCs had
a trophic influence on breast cancer cell proliferation
through ionotropic purinergic signaling113. In addi-
tion, MSCs release cytokines and chemokines in the
TME that support tumor growth, such as CXCL12,
which enhances tumor cell proliferation and survival,
and VEGF, which promotes neovascularization in
the TME114. MSCs may provide immune protec-
tion to breast cancer cells (BCCs) through their im-
munosuppressive capacity following the production
of MSC-secreted TGF-β 115. As a result, Treg cell
proliferation increased, while the functions of cyto-
toxic CD8+ lymphocytes and CD56+ NK cells were
suppressed115. When human MSCs were cocultured
with MDA-MB-231 cells, TGF-β produced by MSCs
was shown to induce directional migration and inva-
sion of metastatic BCCs116. The subsequent release

of various trophic factors, cytokines, and chemokines
by MSCs contributes to the increased proliferation of
BCCs, including an increased number of breast can-
cer stem cells (BCSCs)117. For the preservation and
progressive proliferation of BCSCs, the formation of
a cancer stem cell niche (CSCN) with a timely avail-
able concentration of trophic nutrients, principally
given by suitably primed MSC populations, may be
necessary 117. Liu et al. showed that bone marrow-
derived MSCs (BM-MSCs) accelerated breast can-
cer cell growth by producing cytokines that modu-
late BCSC populations118. Cancer cells release IL-6,
which facilitates homing of MSCs to tumor sites and
induces them to produce CXCL7118. CXCL7 pro-
duced by MSCs interacts with cancer cells via the
CXCR2 receptor, causing the release of multiple cy-
tokines, such as IL-6 and IL-8. IL-8 binds to the
CXCR1 receptor on CSCs, prompting them to pro-
liferate and invade118. BCSCs and colon CSCs have
been shown to be regulated by IL-6118. In addition to
regulating CSCs, IL-6 produced by cancer cells inter-
acts withMSCs, causing them to secrete more CXCL7
that generates a positive feedback loop118. Cancer
stem cells (CSCs) are a tumor subpopulation that is
responsible for tumor metastasis and chemo- and ra-
diotherapy resistance, potentially contributing to tu-
mor relapse107. CSCs have long been thought to be
an original source of cancers and are responsible for
homing MSCs to primary tumor growth sites by se-
creting IL-6, which can suppress other responses in
the tumor niche119.
Exosomes produced by TA-MSCs in humans and
mice facilitated rapid breast cancer development as
monocytic myeloid-derived suppressor cells at tu-
mor sites differentiate into highly immunosuppres-
sive M2-polarised macrophages120. MSCs supported
breast cancer growth via their immunosuppressive ef-
fects121. BM-MSCs have been reported to inhibit the
proliferation and migration of PBMCs toward BCCs
and suppress NK and CTL functions. Hence, MSCs
can provide immune protection to BCCs121.
In contrast, Leng et al. showed inhibition of breast
cancer growth in both administered human umbilical
cord-derived MSCs (hUC-MSCs) and in vitro cocul-
ture of hUC-MSCs with MDA-MB-231 cells122. Ad-
ditionally, culturemedium from hUC-MSCs has been
proven to reduceMDA-MB-231 cell proliferation,mi-
gration, and angiogenesis and induce DNA damage
by blocking the Stat3 pathway, as shown by biolumi-
nescence imaging technology 123. The Stat3 signal-
ing system plays a role in tumor growth and breast
cancer-derived stem cell survival123. Themost widely
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recognized mechanism by which MSCs exhibit ther-
apeutic benefits is their interaction with the tumor
cell cycle109. MSCs can trigger cell cycle arrest and
halt cancer progression via inhibition of proliferation-
related signaling pathways such as phosphatidylinos-
itol 3-kinase/protein kinase B (PI3K/AKT)109.
The original source of MSCs should be considered
when determining the antitumor effect of MSCs, as
hUC-MSCs have previously been shown to inhibit
glioblastoma proliferation but not adipose tissue-
derived MSCs124. Various studies that have been
conducted thus far indicated that similar levels of ef-
ficacy and desired outcomes have not always been
achieved125. Apart from MSC tissue sources, MCSs’
ability to promote or repress tumor formation may
be influenced by experimental tumor mouse models,
MSC dose or timing of MSC therapy, cell delivery
mechanism, control group selection, and other exper-
imental variables109. In addition, autologous MSCs
can be affected by a patient’s disease status, which
limits their use125. Hence, it is crucial to gather in-
formation about the characteristics of MSCs obtained
from various sources, as well as the influence of the
host (patient) medical conditions on MSCs when in-
volving clinical trials, to ensure the safety and effi-
cacy of cell-based therapies using MSCs125. Stan-
dardizing the dose and treatment timing ofMSCs and
hematologicmalignant cells when they are cocultured
for studies involving in vitro or injected into cancer
mousemodels is also crucial to safely and successfully
utilizing MSCs for further clinical applications108.

Polarization of macrophages with MSCs
The plasticity of macrophages enables their program-
ming via exposure to certain stimulation factors.
Apart from that, the capacity of MSCs to modu-
late the immune system has been widely demon-
strated via their immunomodulatory effect on mono-
cytes/macrophages, T cells, B cells, NK cells, and den-
dritic cells96. The capability of MSCs to regulate the
function of macrophages has become clear in recent
years126.
The immunomodulatory ability of MSCs is not only
regulated by direct cell-to-cell contact but can also
occur through paracrine action by soluble factors127.
MSCs are used to convert macrophages into the anti-
inflammatory M2 phenotype and induce a suppres-
sive immune response103. Kim and Hematti cultured
macrophages derived from human peripheral blood
monocytes for seven days without any addition of cy-
tokines to generate macrophages and then cocultured
them with BM-MSCs for another three days128. In-
creased expression levels of CD206, IL-6, and IL-10

but lower levels of IL-12 and TNF-α were observed,
indicating amacrophage shift toward alternatively ac-
tivated macrophages or M2 macrophages following
exposure to MSCs128. Shin et al. demonstrated that
macrophage regulation mediated by human umbil-
ical cord blood-derived MSCs (hUCB-MSCs) offers
therapeutic potential in rheumatoid arthritis (RA)
patients101. hUCB-MSCs polarized macrophages
toward an M2-like phenotype via TNF-α-mediated
activation of cyclooxygenase-2 (COX-2) and TNF-
stimulated gene-6 (TSG-6)101. Similarly, adipose-
derived (AD)-MSCs increased M2 macrophage po-
larization via the COX-2-PGE2 pathway, which pro-
tected against heart injury in diabetic cardiomyopa-
thy (DCM) rats129. He et al. also showed that
MSCs can induce M2 polarization of macrophages
both in vivo and in vitro with the aid of exo-
somes derived from MSCs130. A time-dependent
increase in the number of both RELM-α , an M2
macrophage marker, and CD68, a surface marker for
macrophages, was observed following systemic injec-
tion of bone marrow MSCs (BMMSCs) and jawbone
marrow MSCs (JMMSCs) into mice130.
A challenge involving in vivo research is that systemi-
cally injectedMSCs are confined in the lungs and have
a short lifespan; only less than 0.1% of the infused
cells are detected in other organs131. Coculture of
BMMSCs and JMMSCs showed a higher number of
both CD14+CD163+ and CD206 macrophages and
increased levels of IL-10 but lower levels of TNF-α
by the macrophages130. The skewing of macrophages
to the M2 phenotype induced by MSCs may be ben-
eficial to help in reducing arthritic inflammatory re-
sponses and promoting wound healing and may po-
tentially be used for the optimization of bone frac-
ture therapies101,104,130. However, enhancement of
the M2-like phenotype in the TME promotes tumor
progression.
More recent studies have shed light on the tendency
of MSCs to promote macrophage polarization to the
M2-like phenotype when they are initially in the M1
activation state102,104. According to a study on type
2 diabetes mellitus (T2D) by Xie et al., UC-MSCs can
impair insulin resistance through the production of
IL-6, which promotes M2 polarization in response
to LPS-stimulatedmacrophages (M1macrophages) in
vitro102. Lu et al. found that exposure of primary
mouse MSCs to polarized M1 macrophages shifts
macrophages from M1 to M2 early in osteogenesis
with a better pro-osteogenic capacity 104. Addition-
ally, MSCs that are in the initial environment of M1
signaling are more potent in producing higher levels
of PGE2 and other anti-inflammatory signals that are
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involved in the modulation of macrophage transition
from the M1 to M2 phenotype104.
Vasandan et al. carried out a study to inves-
tigate MSC-macrophage crosstalk at each level of
macrophage activation, as they postulated that the
precise functional state of macrophages at the MSC
interface can considerably influence therapeutic re-
sults following MSC transplantation14. From the
study, human bone marrow MSCs skew THP-
1-stimulated naïve macrophages to an M1 acti-
vation state, reducing already activated M1-like
macrophages by shifting them to M2-like activation
and enhancingM2 activation in readily activatedM2-
like macrophages in vitro (Figure 4)14. MSCs did
not polarize naïve macrophages to the M2-like state,
which is the predominant subtype in tumors, follow-
ing MSC cocultures14. Hence, a study focusing on
the interaction at a distinct stage between MSCs and
monocytes/macrophages is crucial, as macrophages
come in a variety of functional modules in a variety
of disease contexts.
Other than cell−cell interactions, conditioned
medium from MSCs can also mimic the actions of
entire cells via paracrine-secreted components from
the MSCs, which are referred to as the secretome132.
The secretome can include cytokines, chemokines,
growth factors, anti-inflammatory factors and even
proteins conveyed by MSC-derived extracellular
vesicles (MSC-EVs)133. Exosomes (vesicles with a
diameter of 50 – 150 nm), microvesicles (vesicles
with a diameter of 100 – 1000 nm), and apoptotic
bodies (vesicles with a diameter of 50 – 4000 nm)
are the three classic categories of EVs based on their
sizes and biogenesis methods132. Exosomes are
created by the intracellular body pathway, in which
they are released into the extracellular environment
via exocytosis by disintegrating multivesicular
bodies (MVBs) after binding to the lysosome or
cell membrane. Late endosomes differentiate into
MVBs, which contain intracellular vesicles. Early
endosomes develop when the cell membrane is
invaginated, and they connect with vesicles created
by budding of the Golgi apparatus to form late
endosomes134. Exosomes can carry proteins, lipids,
and miRNAs, which, among other things, help to
regulate cellular activity and facilitate intercellular
communication134. Tetraspanins (CD9, CD81,
CD63), HSP60, HSP70, TSG101, and Alix are protein
markers found on the surface of exosomes134.
MSC-EVs isolated from the secretome can repro-
duce the effects of MSCs and regulate macrophage
polarization132,135. Lo Sicco et al. showed that

macrophages efficiently internalized MSC-EVs, caus-
ing them to change from an M1 to an M2 pheno-
type135. Similarly, Zhao et al. found that MSC-
derived exosomes (MSC-Exos) altered the polariza-
tion of M1 macrophages to M2 macrophages, and
the study also demonstrated that miR-182 in MSC-
derived exosomes targets the TLR4/NF-κB/PI3K/Akt
signaling cascades to influence macrophage polariza-
tion136. Injection of MSC-Exos promoted increased
mRNA expression of M2 macrophage markers but
inhibited the mRNA expression of M1 macrophage
markers in the myocardial tissue of model mice based
on a study by Shen and He137. From the study,
MSC-Exo successfully transformed the polarization
state of LPS-induced RAW264.7 macrophages from
the M1 phenotype to the M2 phenotype in vitro ,
andmiR-21-5p is believed to regulate the polarization
of macrophages to the M2 phenotype137. miRNAs
have important functions in immune regulation and
can have dual activities on inflammation138. How-
ever, studies have mainly focused on the role of MSC-
Exos in altering the polarization of M1 macrophages
to M2macrophages but have still limited information
on their effect on naïve macrophages.
The ability of MSCs to control macrophage polariza-
tion through direct cell−cell interactions or paracrine
effects makes additional study of macrophage po-
larization and phenotype after exposure to MSCs
very interesting132. MSCs could potentially be
used in cancer therapies to reprogram macrophages
toward M1 antitumor phenotypes104. However,
macrophage reprogrammingmust be focused on spe-
cific macrophage polarization states to avoid further
increases in protumor M2-like TAMs when carrying
out future studies to explore macrophage reprogram-
ming with MSCs. Additionally, future research into
the response of innate immune cells to MSCs in vivo
may provide new insight into the exact events that oc-
cur following MSC delivery, perhaps boosting the ef-
ficacy of MSCs administered intravenously in clinical
trials139.

CONCLUSIONS
Targeting TAMs, which are a part of the TME, is in-
deed a promising method in the treatment of breast
cancer, as TAMs can not only promote tumor growth
and metastasis but also trigger cancer resistance. Im-
provements in treatment are needed to enhance sur-
vival rates and life expectancy for breast cancer pa-
tients. Additionally, there is a high population of
TAMs in mammary tumors compared to other pop-
ulations of protumor cells, and these TAMs exhibit
a more M2-like phenotype. Hence, M2-like TAMs
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Figure 4: MSCs modulate macrophages phenotypes differentiation. MSCs regulate (a) conversion of mono-
cyte to macrophage, (b) stimulate naïve macrophages to M1-like macrophages and (e) elicit the activation of M2-
like macrophages. Furthermore, MSCs have the capability (c) to reduce M1-like macrophages, (d) deviate them to
become M2-like macrophages via PGE2 dependent manner. The illustration was obtained from Vasandan et al.
with permission from springer nature 14.

in the TME are useful as prognostic markers and
therapeutic targets for breast cancer treatment. Re-
programming TAMs toward the M1-like phenotype
may increase antitumor activity against breast can-
cer cells and can be used as a strategy to enhance
commonly used immunotherapies to improve clini-
cal outcomes among breast cancer patients. MSCs
have an immunomodulatory effect not only on T-
and B-lymphocytes, NK cells, and DCs but also on
macrophages. Cell−cell interactions and paracrine
action via soluble factor secretion are two ways in
which MSCs modulate the immune response. MSCs
can skewnaïvemacrophages toM1-likemacrophages.
Hence, reprogramming TAMs into the M1-like phe-
notype by exposing naïve macrophages to MSCs
should be further explored to increase antitumor re-
sponses in the breast cancer TME.However, improve-
ments are still needed in future studies. In vitro re-
search involving the characterization of macrophage
polarization and phenotype during coculture with
MSCs or when exposed to their secretome only is
required to prevent further stimulation of M2-like
TAMs that support tumor progression instead. Fu-
ture in vivo research into the response of innate im-

mune cells to MSCs could provide new insight into
the precise events that occur after MSC delivery, per-
haps boosting the efficacy of MSCs supplied intra-
venously in clinical trials.

ABBREVIATIONS

APCs: Antigen presenting cells, BM-MSCs: Bone
marrow-derived MSCs, CSCs: Cancer stem cells,
CT: Chemotherapy, CTLs: Cytotoxic T cells, DCs:
Dendritic cells, ECM: Extracellular matrix, EMT:
Epithelial-mesenchymal transition, EVs: Extracel-
lular vesicles, hUCB-MSCs: human umbilical cord
blood-derived MSCs, IFN-γ : interferon-γ , LPS:
Lipopolysaccharide, MDSCs: Myeloid-derived sup-
pressor cells, MHC: Major histocompatibility com-
plex, MSCs: Mesenchymal stromal/stem cells, MSC-
Exos: MSC-derived exosome, NCDs: Noncommu-
nicable diseases, NK: Natural killer, TAMs: Tumor-
associated macrophages, TCR: T cell receptor, TME:
Tumor microenvironment, TNF-α : Tumor necrosis
factor-α
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