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ABSTRACT
Background: In medicine, general anesthesia during surgery involves the administration of phar-
macological (hypnotic) agents and clinical monitoring via the analysis of the patient's nervous sys-
tems (loss of consciousness and reactivity) during stimulation. Unfortunately, this clinical moni-
toring is complicated by factors such as curarization, shock, and drugs that block cardiovascular
responsiveness. Additionally, inadequate anesthesia due to over- or underdosing increases mor-
bidity rates, such as hypotension and respiratory depression in the case of overdose, and mem-
orization, movement, hypertension, tachycardia, laryngospasm, and bronchospasm in the case of
underdosing. Several anesthesia monitoring tools have been introduced to address this issue, such
as bispectral analysis (BIS), auditory evoked potential (AEP), q-CON, and entropymonitors; however,
these instruments are complicatedby accuracy, noise, artifacts, and their correlationwith hypnotics.
Methods: Noninvasive anesthesia monitoring methods include lower esophageal sphincter, AEP,
entropy, and spontaneous electroencephalography (EEG), which is the most commonly used. This
method involves BIS of the collected EEG signals and correlates well with consciousness and se-
dation scores regardless of the anesthetic agents used. In this paper, we present a noninvasive
method for monitoring the depth of anesthesia during surgery using the AEP and BISmethod. This
study aimed to reduce artifacts, optimize the hypnotics/analgesics dosage, limit the effects of phar-
macological use, and ensure a better quality recovery. Results: We applied two techniques, BIS and
event-related potential (ERP), following multiple stimuli to determine the best anesthesia monitor-
ing approach. A comparative study of the EEG signals showed that measuring cortical responses
by ERP provided more precise data in space and time regarding the sedation state of the patient
and better monitoring of the hypnotic dose. The BIS method was simpler and easier to implement;
however, only average and static values regarding the sleep rate could be obtained. Conclusion:
BIS and ERP appear suitable for monitoring sedation and hypnotic dosage during anesthesia, with
the best reliability rates and speed with a latency of <4 ms and an accuracy of 92%.
Key words: Anesthesia, Bi spectral analysis, EEG, AEP, ERP, Auditory nerve stimulation

INTRODUCTION
Electroencephalography (EEG) is a technique that
records brainstemactivity through the cortex andmay
involve cortical recordings in some cases. EEG mea-
sures spontaneous activity in the presence or absence
of a stimulus. For example, the auditory evoked
response (AER) results from an auditory stimulus.
The event-related potential (ERP) is used to describe
the neural responses to a specific motor, cognitive,
or sensory stimulus. In the 1970s, Schmidt & Al1

introduced the clinical use of electrocochleography
to diagnose Meniere’s disease using a set of elec-
trodes placed on the exposed brain surface. Then, in
1971, Jewett andWilliston conducted the first system-
atic study of human auditory brainstem responses2.
Later, Salters and Brakman in 1976 introduced brain-
stem electrical response audiometry (BEA) for de-
tecting tumor acoustics3. Cortical responses demon-

strate several shapes and types, such as cortical audi-
tory evoked potential (CAEP), long-latency or late-
latency response (LLR), and auditory late response
(ALR).The auditory steady state response (ASSR) was
introduced in 2001, which allows the simultaneous
presentation of multiple carrier frequencies in both
ears and was adopted in clinical practice to estimate
the hearing threshold4.
Our work focuses on two clinical applications of ERP
responses: the monitoring and evaluation of cochlear
prostheses by electroacoustic stimulation and the
monitoring and control of anesthesia by cortical re-
sponses to stimuli. This study relates to the second
application. The principle of general anesthesia is
to temporarily block perception, consciousness, and
motor responsiveness to stimuli, and the anesthesiol-
ogist maintains the stability of the unconscious pa-
tient’s vital functions. However, these goals (sleep
and no reactivity) are distinct and can be achieved
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independently. Sleep is linked to hypnotic agents,
while loss of reactivity is highly dependent on anal-
gesic agents. Thus, pharmacological administration
must be optimized, monitored, and adapted on a case-
by-case basis throughout anesthesia. Clinical moni-
toring involves analyzing neural responses to stimula-
tion, such as brain reactions to surgical incisions5. At
the beginning of the last century, Guedel introduced
anesthesia monitoring by describing four stages of
sleep achieved with ether-chloroform (Guedel, 1920).
In 1929, EEG was invented by Berger to study brain
electrical activities by measuring electrical poten-
tials6. Since 1990, the statistical and spectral analy-
sis of signals from electroencephalograms (EEGs) has
allowed the practical and clinical development of sev-
eral anesthesia monitors.
In 1993, Kissin proposed a conceptual study and
framework of anesthesia centered on the pharmaco-
logical effects of anesthetic drugs. Analysis of frontal
cortical EEG has been shown to be beneficial in ex-
ploring the loss of consciousness component, while
monitoring the electrical activity of subcortical struc-
tures allows an estimation of the patient’s responsive-
ness to a noxious stimulus7. Among the most devel-
oped analyses involving EEG were performed by Bal-
lard in 1997, who decomposed the input signal into a
frequency spectrum by Fourier series. However, the
bispectral analysis of EEG has captured the attention
of the anesthetic community. The EEG bispectral in-
dex (BIS) is a statistical index derived from the EEG
by an algorithm using a large patient database. This
index is predictive of the depth of hypnosis induced
by propofol8.
The use of depth of anesthesia monitoring in prac-
tice was introduced in 2006 following recommenda-
tions from the American Society of Anesthesiologists
(ASA), followed by a Cochrane Library meta-analysis
in 2007 and formal recommendations from French
Society of Anesthesia & Intensive Care Medicine ex-
perts in 20099. Two major studies were conducted
by Dwong, Liu, and Punjasawa. The first included
1,380 patients from 11 outpatient surgery studies. A
reduction in hypnotic drug consumption of 19% was
recorded. The second included 4,056 patients from
20 studies7. However, despite the development of
BIS monitors, several factors limit their accuracy, re-
sulting in an average accuracy of 70% to 80%. To
solve these problems, we developed a noninvasive BIS
monitor to monitor and control the anesthesia pro-
cess. First, we replaced analog circuitry with pro-
grammable and embedded algorithms implemented
in the Raspberry Pi electronic board. This approach

prevents inaccuracies in the device’s circuitry and re-
duces the influence of artifacts. Second, we estimated
the optimal hypnotic ratio to achieve the desired sleep
level (e.g., the BIS ratio was estimated to be 40% in
the sleep state), unlike other BISmonitoringmachines
that adjust the anesthetic dose according to BIC value
changes.

METHODS
Auditoryevoked potentials
Auditory evoked potentials are a physiological mea-
sure of the response of subcortical and cortical nerve
centers to an auditory stimulus. This response can
be divided into three successive series of positive and
negative waves: the first is the early response (EAEP),
which reflects brainstem activity; the second is the
mean latency response (MAEP), which reflects the
early cortical response; and the final is the late cor-
tical response (LAEP). Only the auditory evoked po-
tentials at medium latency can be used to measure
the anesthesia depth. The latency and amplitude of
Nb waves and Pa (Figure 1) are the main parameters
usually analyzed. The average latency of PEA predicts
loss of consciousness under propofol, according to the
findings of Iselin-Chaves in 200010.
Stimuli used to produce AEP consist of spikes (brief
100-microsecond square wave) or tone bursts (brief
sinusoidal waveforms). The choice of stimulus type
has minimal impact on anesthesia applications. The
stimulimust be delivered at intensities above the hear-
ing level. The scalp location with the largest AEP am-
plitude is usually the vertex (Cz). The steady-state
response evoked by stimuli delivered at rates near
40 seconds (the 40 Hz auditory steady-state response
(ASSR); Figure 2) has been used extensively to assess
anesthetic effects. Transient responses are classified
according to their latency as fast (6–10 ms), middle
(10–50 ms), slow (50–250 ms), and late (over 250 ms)
responses11. The AEP acquisition protocol with stan-
dard brain response and latency values is illustrated in
Figure 212.
In 2001, Danmeter13 introduced the first AEP mon-
itor to the biomedical market. The monitor detects
the AEP index using an autoregressive model (AAI),
which can be displayed on two scales: 0–100 or 0–
60. For optimal anesthesia, the index value varies be-
tween 15 and 2514. Musizza and Ribaric (2010)15

presents the AEP algorithm and AAI index.

BISmonitoring
EEG BIS is a spectral and statistical analysis method
based on an algorithm developed using a large patient
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Figure 1: Latency auditory evoked potentials signals. (A) Time domain waveform, (B) Frequency domain

Figure 2: AEP data acquisition signal.

Figure 3: The data acquisition unit of the BIS monitors [10].

5997



Biomedical Research and Therapy 2023, 10(10):5995-6008

Figure 4: Algorithm of the BIS index.

database. It measures the coherence of the EEG com-
ponents and their frequency synchronization. The
deeper the level of anesthesia is, the greater the con-
sistency and synchronization will be. The EEG signals
are collected from disposable self-adhesive electrodes
placed on the areas hairless of the scalp, as illustrated
in Figure 3. These electrodes are connected to a con-
verter amplifier and a signal processing unit for filter-
ing, feature extraction, and processing. BIS is easy to
use and predictive of the hypnosis depth induced by
propofol5.
To date, only one large-scale study has examined the
use of BIS while taking propofol. Zhang et al. per-
formed a randomized controlled trial including 5,228
patients with propofol and found that the risk of re-
gaining consciousness was significantly reduced in
the BIS-guided cohort (0.14%) than that in the cohort
without BIS (0.65%). However, BIS has several limi-
tations, the most striking of which is the wide range
of values obtained for the same endpoint, making it
very difficult to establish a valid individual threshold
for loss of consciousness16,17. Many artifacts, such as
pacemakers, drugs, intra-abdominal irrigation, and
the electromyogram, interfere with the signal18.
Figure 4represents the principle of the algorithm of
the BIS monitor. After the acquisition and reading of
the EEG signal, it is then digitized, preprocessed, and
filtered to remove artifacts from eye movements and
power grid interference. The preprocessed data are
used to calculate the parameter of the ratio β . This
parameter is calculated as the ratio between 30–47
Hz and 11–20 Hz frequency bands. The parameter
synchrony-fast-slow is calculated by bispectral analy-
sis. It is defined as the ratio between the sum of all
spectral peaks between 0.5 and 47 Hz and the sum of

all spectral peaks over the 40–47 Hz interval19. Fi-
nally, all parameters are computed to deduce the BIS
index according toEquation (1). TheBIS algorithm is
based on the same principle as phase lag entropy 20,21.
The bispectrummeasures the correlation between sig-
nal phases at different Fourier frequencies. It is de-
fined as an FFT-2D of third-order cumulates of a ran-
dom process and is characterized by the bicoherence
index (BIC), which varies between 0 and 100%22. Ac-
cording to the power density P(f), the correlation in-
dex (BIC) expression can be expressed as:

BIC( f 1, f 2) =
B( f 1, f 2)

∑
i

√
Pj( f1).Pj( f2).Pj( f1 + f2)

.100 (1)

With

P j( f ) =
∣∣X j( f )

∣∣2 : power spectral density (2)

T Pj( f 1, f 2) = X j( f 1).X j( f 2).X∗
j ( f 1+ f 2) :

spectral triple product
(3)

B( f 1, f 2) =
∣∣i□T Pj( f 1, f 2)

∣∣ : Bi− spectrum (4)

RESULTS
Electrode standard positions
TheEEG represents the time-varying trace of the elec-
trical potential collected on the skull for different
points of the scalp. EEG acquisition facilitates the vi-
sualization of brain process activity and our under-
standing of neurophysiologic phenomena. EEG sig-
nal acquisitionwas performed using electrodes placed
in contact with the scalp at positions determined ac-
cording to the international standard 10/2023. These
locations are illustrated in Figure 5 and are explained
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Figure 5: Standard positions of EEG Electrodes on the scalp [10],[20].

Figure 6: Illustration of brain waves.

Table 1: Latency in function of hypnotic’s percentage

Pourcentage of hypnotics ERP index Latency in ms

1 % 92 128

2.6 % 20 430

4% 12 1285

5999



Biomedical Research and Therapy 2023, 10(10):5995-6008

Figure 7: Evolution of EEGwavesin function of anesthesia.

in detail in the following section. Since EEGmeasures
the brain’s electrical activity, it can indicate the brain’s
state of sleep or sedation or any other activity. Unfor-
tunately, the obtained and measured signals are very
weak (a few microvolts) and require processing and
amplification. Their amplitudes vary according to the
patient’s age, sex, and condition24.

Extraction and classification of EEGwaves
The analysis of EEG signals allows the extraction of
five waves: delta, theta, alpha, beta, and gamma.
These feature extractions help identify patients’ awake
or sleep states during the night or when under anes-
thesia, as confirmed by Alferd Loomis25. Loomis
found that the brain demonstrates electrical activity
in neuronal regions. Variations in the fluctuations of
these generated waves allow us to determine which
wave dominates at a given moment. Each of the five
waves is characterized by its frequency band and po-
tential amplitude, as shown in figure 6. Each wakeful-
ness state indicates a specific action potential corre-
sponding to three parameters (awake state, light sleep
state, and deep sleep state).
EEG recording can provide indicators of a person’s
physical and mental state. For example, an EEG that
shows high-amplitude alpha waves over the occipital
area of the brain indicates that the person is relaxed
and has their eyes closed. The alpha waves will dis-
appear if they open their eyes26. Additionally, sleep

researchers use recordings from entire nights to study
and classify the different stages of sleep. The EEG
waveforms of epileptic patients can also help localize
seizure activity in the brain27,28.
Every brain wave can be affected by the brain state as
follows (Figure 6):

1. DELTA Brain wave:
2. THETA Brain wave:
3. ALPHA Brain wave: Predominant brain wave

when a person is in the phase between wakeful-
ness and sleep or relaxation. It disappears when
the eyes are open. The alpha activity increases
immediately when the eyes are closed. Its fre-
quency ranges from 8 to 13 Hz. This wave re-
flects the posterior part of the head in the occip-
ital region and the cortex and its peripheries.

4. BETA Brain wave: Predominant brain wave
when a person is awake or concentrating. Its fre-
quency ranges from 13 to 40 Hz. It is located in
the temporal, occipital, and frontal lobes of the
brain.

5. GAMMA Brain wave: A rapidly oscillating
brain wave that is predominant when a person is
in the intellectual thinking phase. It shows sub-
stantial brain activity during creative processing
and problem-solving. The Gamma wave is the
only wave present in all parts of the brain. Its
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Figure 8: Real time acquisition: EEG with 3 from 16 channels. Delta wave : deep sleep, The theta wave : light
sleep, alpha wave : brain sleeping, Beta wave : first activity with opening eyes, Gamma wave : mental activity.

Figure 9: Experimental electrodes position and names on the scalp.
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Figure 10: Real time acquisition with five sample epochs of EEG data.

Figure 11: ERP Channel activities for electrodes 1 and 14 (scalp, spectrogram, spectrum) (For a moderate
anesthesia state).

frequency ranges from 40 to 80 Hz with a low
amplitude of a few microvolts.

Figure 7 shows the effect of anesthesia and hypnotics
on a person’s state and variation in the EEG brain
waves. Note that the deeper the anesthesia is, themore
brain waves demonstrate low frequencies with high
amplitudes, and vice versa. The higher the analgesic
and hypnotic level, the faster the B–A–T–D transition
(Beta to Alpha toTheta to Delta)

Experimental
EEG is measured by using small electrodes attached
to the scalp’s surface. The number of electrodes can
vary from 1 to 32 in the 10/20 scalp system or from 1
to 256 in the 10/10 system. The electrodes are placed
at predefined positions according to the international
10/20 system or its variants. Theweak electrical activ-
ity detected by the electrodes varies from 5 to 100 µV,
and the frequency range of interest is between 1 and
40 Hz.
We used the international 10/20 system with 29 elec-
trodes chosen from 32 according to meridians cross-
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Figure 12: ERP Channel activities for electrodes 1 and 14 (scalp, spectrogram, spectrum) (For a sleep state).

Figure 13: EEG Real time acquisition: Power spectrum envelopes and ERP activities of fivemost significant
independent components.

ing the scalp. Every electrode is labeled with a let-
ter that characterizes standard areas on the skull, as
shown in Figure 5. These positions, which are ref-
erence points, are as follows: prefrontal (Fp), frontal
(F), temporal (T), parietal (P), occipital (O), central
(C), and cranial sagittal (Z). Even electrodes are on
the right side of the head, while odd electrodes are on
the left side29.

EEG database

The EEG database consists of two patients. The first is
a 25-year-oldman. The second is a 26-year-old female
patient who was placed under anesthesia with 2.6%
sevoflurane.
The protocol for EEG signal measurement followed
the 10/20 architecture with 29 electrodes placed at

prefrontal and temporal locations on the scalp, as de-
fined in Figure 5.

EEGwave extraction and discrimination
The collected EEG data were transferred to a MAT-
LAB signal processing algorithm to extract the EEG
waves (temporal waveforms).Figure 8illustrates the
results of temporal and spectral analysis of the EEG
signals.
The Delta–Alpha–Theta–Beta transition corresponds
to the cycle of awakening from the state of sedation
toward awareness. The experimental measurements
produced the following results:

1. Delta wave: frequency F1= 1/T1= 1,7 Hz
2. Theta wave: frequency F2= 1/T2 = 6,5 Hz
3. Alpha wave: frequency F3= 1/T3 = 9,2 Hz
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Figure 14: Real time acquisition: EEGwith 4 from 16 channels.

Figure 15: Electrode potential vs Latency.
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Figure 16: Sedation state vs. BIS index and hypnotics.

4. Beta wave: frequency F4= 1/T2 = 23,5 Hz

ERP and ICA components
An ERP is the measured brain response following a
sensory, cognitive, or motor event. An ERP is con-
sidered an electrophysiological response to an inter-
nal or external stimulus. Studying ERPs provides a
noninvasive way to assess brain function. ERP can be
reliably measured using EEG signals associated with
surface electrodes to record electrical activity from
the cortex through the skull and scalp. However,
due to the thousands of signals collected, the brain’s
response to a stimulus is rarely visible in the ongo-
ing EEG. To address this issue, ERP monitors record
the average of several dozen individualmeasurements
of the stimulus of interest. This technique cancels
noise and spontaneous EEG and improves the volt-
age response to the stimulus by making it stand out
clearly from the average background. We used MAT-
LAB and EEGLAB software to conduct parametric
and statistical analyses of EEG signals. These tools
are widely used in neurophysiology and biomedical
signal processing. EEGLAB toolboxes and GUI in-
clude database import/export, EEG data analysis and

visualization, artifact rejection, filtering, independent
component analysis (ICA), and time-frequency anal-
ysis. The data sample consists of 100 EEG epochs
sampled at 500 Hz. Figure 9 represents the real-time
and experimental electrode positions and names on
the scalp. For example, channel 14 is affected by the
F3 electrode position. Figure 10 shows five sample
epochs of the EEG data. Examination of scroll data
variations allows for five epochs of data plotted at 29
electrode sites. In this example, two data epochs (col-
ored 1 and 3 in Figure 10) were automatically flagged
for rejection due to their out-of-range values and ar-
tifacts.
Figures 11, 12, 13, 14 and 15 illustrate the process
of constructing ERP image plots. An ERP image rep-
resents instantaneous trial potentials as colored hor-
izontal lines. The average spectrum of the signal and
a topography representative of the scalp are also pre-
sented. The red circles in Figure 11 on the scalp map
indicate the electrode position and channel number
corresponding to the data being imaged. A 10 Hz
wavelet was applied for each trial to measure oscilla-
tory activity in a time-centered 3-cycle window. We
used EEGLAB to analyze the independent ICA com-
ponent of each electrode to isolate the artifacts and
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the neighboring neuronal effects, revealing high in-
tercorrelation. This strategy effectively detects and re-
moves eye, muscle, and line noise artifacts.Figure 11
shows the electrode potential activity according to
their spectrum and spectrogram. Regarding the two
channels, or electrodes 1 and 14, the maximal activity
is located at 10 Hz, and the detected wave frequency
(Fo) is approximately 11 Hz. This indicates that the
object state is between wakefulness and sleep with al-
pha brain wave activity.
However, inFigure 12, we illustrate another state with
the same channel outputs, 1 and 14. The effects of
the burst 10 Hz wavelets no longer occurred, and the
spectrum demonstrates delta wave activity since the
fundamental frequency is F1= 2 Hz. This indicates
that the object state is anesthetized or in a deep sleep.
Figure 13-a shows the components representing the
largest area of 10 Hz activity at the POz electrode
(channel 29). The same figure shows the power spec-
trum of the selected channel (upper black trace), the
activity spectra of the projection on this channel of
each of the 29 components (Figure 13-b), and the
scalp power distributions of the four most promi-
nently contributing components 1, 2, 3, 4 and 5
(Figure 16-a). The envelopes of the five independent
components (ICA) with the most important poten-
tials (1, 2, 3, 4, and 5) have fundamental frequencies
of approximately 12 Hz (alpha waves) and indicate
that the object is under a moderate anesthesia state.
The thick black traces in Figure 13-b show the enve-
lope (all channels) of the ERP data, and the thin traces
show the envelopes of the component contributions
represented in the ERP.
In Figure 14, the ICA components (ERP and wave-
forms) illustrate the deep sleep or sedation state,
showing the largest channel activities at the POz elec-
trode (channel 29). We also demonstrate that the
most significant electrode potentials are located in
channels 1, 2, 3, 4, 5, 8, and 15. From these electrodes,
the 1, 5, and channels are the most affected by seda-
tion (red ERP inFigure 14).
To evaluate the latency of ten ERP signals, for the
same experiments, we measured the latency of the
POz electrode (channel 29), as illustrated in Figure
15. The obtained latency value is approximately 430
ms. This value is acceptable i surgery and reanima-
tion and clinical resuscitation. This indicates that the
motor response of a patient to painful stimulation is
less than 0.5 seconds. This result is very important be-
cause it facilitates and accelerates the anesthesia pro-
cess and can reduce the percentage of hypnotics and
analgesics.Table 1gives the obtained values of latency
as a function of other cases of sedation with different
values of hypnotics.

BIS experimental results
We used several experiments and tests under differ-
ent conditions to evaluate the performance of the BIS
method. Figure 16 shows some of our results. The
upper part illustrates the evolution of anesthesia or se-
dation as a function of the BIS index.
Our findings demonstrate that the patient becomes
immobile and without reactions from a BIS of 50 to
40. Therefore, increasing the hypnotic dose will have
no effect. Additionally, the zone of 80 to 60 seems
to be the most sensitive and important because the
BIS varies and drops suddenly, which requires imme-
diate control of the dosage to avoid overdose or un-
derdose. Additionally, painful stimulation sharply in-
creases the BIS, indicating the need for an analgesic in
parallel with the hypnotic. The lower part of the fig-
ure demonstrates the most important variation in the
hypnotic, which is in the range of 0.5 to 0.8 of the pa-
tient’s brain activity, corresponding to a BIS of 50 to
70.

DISCUSSION
Our experimental results show that the BIS technique
is more sensitive to the hypnotic component than the
analgesic component. Intensive care clinicians use
pain stimulation to observe motor reactions to obtain
a correct prediction of the analgesic dose. During the
induction of anesthesia and in the absence of painful
stimulation, the BIS index decreases simultaneously
with the loss of consciousness depending on the con-
centration of hypnotic used. Below aBIS of 40, it is ad-
visable to increase the hypnotic dose to avoid under-
dosing and intraoperative awakening. When a painful
stimulation is applied, a clinical motor reaction oc-
curs if the analgesic component is insufficient, with a
sudden increase in theBIS.This shows that the analge-
sia dose is insufficient and should be adjusted. Thus,
the BIS constitutes a clinical aid to adjust the sleep
component by controlling the hypnotic dosage before
and during the surgical incision. The evoked audi-
tory potentialmethod thatwe used in the second stage
appears advantageous because it enables not only the
identification of the sedation state but also the moni-
toring of brain activity during anesthesia or sleep. The
obtained latency values demonstrate that this tech-
nique provides a rapid response to audio stimulations
that the medical operator cannot observe.
We compared our results with those reported in other
published studies, such as those conducted byWeath-
erburn29, Zhao30, Ngai31, and Sachiko32. The re-
sults obtained are consistent with the previously re-
ported conclusions and recommendations and affirm
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the superiority of the BIS technique for spontaneous
EGG and the AEP technique for anesthesia monitor-
ing by stimulation.

CONCLUSIONS
In conclusion, we developed a clinical tool for con-
trolling the depth of general anesthesia. Our objec-
tive was twofold. First, to predict loss of conscious-
ness, memorization, and motor reaction to a noxious
stimulus; second, to measure the adequate concentra-
tions of anesthetics and hypnotics to avoid overdose
or under-dosing. To this end, we chose two methods,
EAPs and the BIS, which were implemented and ap-
plied to patients according to standard protocols and
the acquisition and treatment of EEG signals relative
to cerebral activity. The results indicate the ability of
this approach to extract and identify five EEG waves,
each corresponding to a specific patient state, and ef-
fectively detect and identify the brain activity and pa-
tient state in real-time within 4 to 6 ms. These inter-
esting findings can help medical staff better control
and monitor anesthesia during surgical procedures,
reduce the use of hypnotics, and contribute to better
postoperative recovery. However, the limitation re-
mains the prediction of the best analgesic–hypnotic
dosage and the method’s sensitivity to different anes-
thetic administrations.
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