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Abstract—Background:Cancer, the disease of intricateness, has remained beyond our complete perception so far. 
Network systems biology (termed NSB) is one of the most recent approaches to understand the unsolved problems of 
cancer development. From this perspective, differential protein networks (PINs) have been developed based on the 
expression and interaction data of brain, cervix, lung, ovary and prostate for normal and cancer conditions. Me-
thods: Differential expression database GeneHub-GEPIS and interaction database STRING were applied for primary 
data retrieval. Cytoscape platform and related plugins named network analyzer; MCODE and ModuLand were used 
for visualization of complex networks and subsequent analysis. Results: Significant differences were observed among 
different common network parameters between normal and cancer states. Moreover, molecular complex numbers 
and overlapping modularization found to be varying significantly between normal and cancerous tissues. The number 
of the ranked molecular complex and the nodes involved in the overlapping modules were meaningfully higher in can-
cer condition. We identified 79 commonly up-regulated and 6 down-regulated proteins in all five tissues. Number of 
nodes, edges; multi edge node pair, and average number of neighbor are found with significant fluctuations in case of 
cervix and ovarian tissues. Cluster analysis showed that the association of Myc and Cdk4 proteins is very close with 
other proteins within the network. Cervix and ovarian tissue showed higher increment of the molecular complex 
number and overlapping module network during cancer in comparison to normal state. Conclusions:  The differen-
tial molecular signatures identified from the work can be studied further to understand the cancer signaling process, 
and potential therapeutic and detection approach. 
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INTRODUCTION 

Cancer is an abnormal manifestation caused by the 

process of tumorigenesis due to the mutation in onco-

genes and tumor suppressor genes. Mutation produc-

es chromosomal aberration, genomic and proteomic 

instability and finally, abnormal proliferation and dif-

ferentiation. Different methods such as clonal genetic 

model, epigenetic model and cancer stem cell model 

tried to uncover the complicatedness of cancer 

(Shackleton et al., 2009). However, most of these ap-

proaches bring little satisfactory results to unfold can-

cer completely. The stochastic nature of cancer initia-

tion requires the dynamic approach to endue their 

non-linear function resulting in the alternation at both 

genomic and proteomic level (Bizzarri and Cucina, 
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2014). Notably, cancer forms an extreme interactive 

complexity and progresses due to the association of 

multiple interactions of numerous constituents of cells 

and tissues (Sonnenschein et al., 2014). The intercon-

nection gene map uncovered significant interconnec-

tivity between known and candidate cancer gene 

products, providing unbiased evidence for an ex-

panded functional cancer landscapewhile demonstrat-

ing how high-quality interaction models will help 

‘‘connect the dots’’ of the genomic revolution (Rolland 

et al., 2014). And the tremendous work of Cancer Ge-

nome Atlas Research Network 

(http://cancergenome.nih.gov/) opens a new era to 

develop therapy against cancer by mapping the genet-

ic changes in 20 cancers. An integrative study like NSB 

could be a better way to understand the intricate pat-

tern of cancer. Comparative analysis of changes in 

protein-protein interaction (PPI) network’s features 

between normal and cancer condition can be a handy 

tool to decipher the conversion of a normal cell into a 

cancer one (Islam et al., 2013). Generally, bimolecular 

networks divide into modules according to the con-

centration of the nodes in the network. The modules 

are the subsets of the network that indicate the con-

nectedness among the nodes within the module 

through edges. The nodes involved in a module are 

highly connected with each other (Rives and Galitski, 

2003). Importantly, the identification of such modules 

in a network is essential to understand the structural 

and functional features of a network (Barabási et al., 

2011) . 

However, pharmaceutical bioinformatics is impending 

towards in silico molecular target analysis and devel-

oping computational tools for delineating the concept 

of modern therapeutics. As a result, cancer-specific 

PPI network scanning can serve as candidates of drug 

target for developing novel cancer therapy (Jeon et al., 

2014). The objective of our work was to analyze the 

complex differential PPI networks in normal and can-

cer condition of brain, cervix, lung, ovary and pros-

tate. Our analysis based on the gene expression and 

interaction data for the proteins involved in cancer 

signaling pathways. MCODE was used to find the 

highly interconnected regions (clusters) of the net-

works (Stevens et al., 2014). Another method Mod-

uLand was used for identification of the hierarchical 

layers of overlapping modules and crucial nodes of 

the networks (Szalay-Beko et al., 2012). Tissue-specific 

networks analysis methods can be used to predict li-

neage-specific responses to uneasiness, identify the 

changing functional roles of genes expression across 

tissues and brighten relationships among diseases 

(Greene et al., 2015). In contrast with tissue-naive net-

works and cancer, which help to assume that the func-

tion of genes across tissues, these maps can answer 

biological questions that are specific to a single gene in 

a single tissue. 

 

 

MATERIALS AND METHODS 

Data retrieval  

Cancer cell map database PC 

(http://www.pathwaycommons.org/pc/home.do) was 

used to make a list of protein molecules involved in 

major cancer signal transduction pathways (Cerami et 

al., 2010). We considered ten major signal transduction 

pathways are α-6-β-4-integrin, androgen receptor, kit 

receptor, Egfr1, Hh, Wnt, Id, Notch, TgfβR and 

Tnfα/NF-kB. Expression of different protein molecules 

in both normal and cancer condition for selected tis-

sues was accumulated byGeneHub-GEPIS (http:// re-

searchpulic.gene.com/Research/genentech/genehub-

gepis/index.html) (Zhang et al., 2007).  

Construction and analysis of differential networks 

Possible PPIs was studied through STRING 

(http://string.embl.de/) (Mering, 2003). Differential 

protein expression of selected tissues for normal and 

cancer state were studied using GeneHub-GEPIS. Java 

programming language was used to determine the 

valid interactions by using Textpad 4.42 version. In 

that case, expressed proteins were assigned value 1 

and unexpressed proteins were assigned value 0. Then 

binary calculation was utilized to determine the valid 

interactions. Only 1+1=1 represents valid interaction 

and 1+0=0, 0+1=0, 0+0=0 denotes invalid interactions. 

In the algorithm, the interaction is stated as yes (1) or 

no (0). From the biophysics point of view, this is a bold 

simplification. We understand that this is the common 

use in this strategy but a comment indicating that real-

ity is more complicated is also necessary. We also per-

formed a weight for the interaction strength which 

indeed a good option (Data not shown).  Cytoscape 

2.8.3 version was used to construct the PPI networks 

for both normal and cancer condition for the tissues. 

Network analyzer, a plugin of Cytoscapesoftware 

package was used to analyze the simple network pa-

rameters (Shannon, 2003). 
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Identification of common cluster in PPI networks 

The protein expressions were studied to determine 

whether they are up-regulated or down-regulated 

during transformation into cancer state from normal 

one. The proteins that were commonly up-regulated 

and down-regulated in all studied tissues during can-

cer condition were identified. Their relevant interac-

tions were identified; while commonly down-

regulated proteins were ignored (contributions of only 

six commonly down-regulated proteins were negligi-

ble). We used the computational methods as described 

by Rahman et al., 2013 (Rahman et al., 2013). In brief, 

Microsoft Excel 2010 was used to subtract normal 

condition expression (digital expression unit) value 

from cancer condition expression of signaling proteins 

and TextPad 4.42 version was used to code in JAVA 

programming language to isolate up-regulated pro-

teins from down-regulated one. Interactions within 

these commonly up-regulated proteins during cancer 

condition were depicted in networks constructed with 

Cytoscape 2.8.3 version (Smoot et al., 2010). Using the 

human PPI network as a backbone, (Srihari and 

Ragan, 2013) infer two tissue condition-specific PPI 

networks, one for normal and one for tumor, by in-

corporating expression and mutation profiles of genes 

in the two conditions, they systematically tracking of 

dysregulated modules and identified novel genes in 

cancer.  

Network modularity analysis 

Module discovery in biological networks has been 

extremely powerful for elucidating molecular machi-

nery underlying physiological and disease pheno-

types. Numerous approaches have been advanced to 

mine such networks for identifying biological mod-

ules, including methods for clustering interactions and 

those based on topological features of the network 

such as degree and betweenness centrality (Mitra et 

al., 2013).  

Briefly, MCODE and ModuLandcytoscape plugins 

were used to analyze network modularity (Bader and 

Hogue, 2003; Szalay-Beko et al., 2012). One hand 

MCODE needed to detect molecular complexes those 

were the densely connected regions in protein interac-

tion network. On other hand,ModuLandwas used to 

determine the overlapping network modules. Un-

weighted network option was used with default value 

1 to create correlation matrix and module correlation 

histogram. The graph related parameters were studied 

by the measure option of ModuLand. 

RESULTS AND DISCUSSION 

Network analyzer study 

Primarily we analyzed the PINs for the brain, cervix, 

lung, ovary and prostate tissue in both normal and 

cancer conditions. We observed some fluctuations in 

the parameters during cancer condition comparison to 

normal ones.Anumber of nodes, number of edges, 

multi-edge node pair, and average number of neigh-

bor are higher in all five tissues in cancer condition. 

Interestingly, significant fluctuations in different pa-

rameter found in case of cervix and ovarian tissues. 

Fig. 1 (1a and 1b) represents the biolayout of protein 

interaction network for ovary and cervix in normal 

and cancer condition. These changes indicated the 

strengthening of modules possibly abetting cancer. All 

other biolayout of protein interaction networks were 

shown in Supplementary file S1 (S1a1, S1a2; S1b1, 

S1b2; S1c1, S1c2). (Srihari and Ragan, 2013) per-

formed a straightforward systematic identification 

and comparison of modules across pancreatic normal 

and cancer tissue conditions by integrating PPI and 

gene-expression data. They found some modules 

showed differences in gene regulation to prompt pan-

creatic and breast cancer. However, genomic altera-

tions in lung cancers have not been comprehensively 

characterized, and no molecularly targeted agents 

have been specifically developed yet. Notably, the 

Cancer Genome Atlas Research Network analyzed 

squamous cell lung cancers and found statistically 

recurrent mutations in 11 genes, including mutation of 

TP53. They discovered loss-of-function mutations in 

the HLA-A class I MHC gene. Additionally TCGA 

identified significantly altered pathways included 

NFE2L2, KEAP1, phosphatidylinositol-3-OH kinase, 

CDKN2A and RB1 (Willett et al., 2013). 

From our network analyzer data, it is a clear indica-

tion that there may be some candidate proteins which 

are responsible for the abnormal proliferation in can-

cer, and are not able to be expressed in normal condi-

tion. On the other hand, network density and charac-

teristics path length are always lower in cancer condi-

tion for all five tissues. However, it is also revealed 

that the nodes within the networks are more con-

nected to each other and form clusters in cancer condi-

tion. Other network parameters also have shown dif-

ferent degree of fluctuation during cancer condition in 

comparison to normal state. List of common network 

parameters for both the normal and cancerous condi-

tion showed in Table 1. 
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Figure 1. BioLayout of protein interaction network for cervix (1A) and ovary (1B) in normal and cancer condition. 

Table 1. Common network parameters for both the normal and cancerous condition 

 

                                 Tissue 

Parameter 

Brain Cervix Lung Ovary Prostate

Normal Cancer Normal Cancer Normal Cancer Normal Cancer Normal Cancer 

Clustering co-efficient 0.307 0.302 0.150 0.295 0.306 0.306 0.284 0.303 0.289 0.294 

Connected component 1 1 3 1 1 1 1 1 1 1 

Network diameter 6 6 10 7 6 6 9 7 6 6 

Network radius 4 4 1 4 4 4 5 4 4 4 

Network centralization 0.152 0.163 0.236 0.176 0.166 0.160 0.185 0.156 0.179 0.171 

Shortest path 372710 

(100%) 

326612 

(100%) 

1334 

(100%) 

156420 

(100%) 

196692 

(100%) 

259590 

(100%) 

14762 

(100%) 

260610 

(100%) 

154842 

(100%) 

202950 

(100%) 

Characteristics path 

length 

2.749 2.766 3.907 2.862 2.800 2.801 3.436 2.804 2.826 2.805 

Avg. number of neighbor 17.375 16.203 2.25 11.929 13.766 14.835 5.0 14.849 12.061 13.259 

Number of the node 611 572 40 396 444 510 122 511 394 451 

Number of the edge 7047 6134 61 3111 4032 5010 389 5098 3107 3937 

Network density 0.028 0.028 0.058 0.030 0.031 0.029 0.041 0.029 0.031 0.029 

Network heterogeneity 0.898 0.895 0.775 0.873 0.916 0.894 0.850 0.879 0.930 0.900 

Isolated nodes 0 0 1 0 0 0 0 0 0 0 

Number of the self-loops 1 1 1 1 1 1 1 0 1 1 

Multi-edge node pair 1738 1499 15 6.405 975 1226 83 1304 730 946 

Cancer 

1A 

Normal Normal 

Cancer 

1B 
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We analyzed the up-regulated and down-regulated 

proteins in cancer condition from the expression data 

(Supplementary file S2: S2a and S2b). We found 79 

commonly up-regulated and 6 commonly down-

regulated proteins in all five tissues (Fig. 2). Eng, 

FHL1, FO5, FOSB, MITF and SAP1B were the com-

monly down-regulated genes. However, the Cancer 

Genome Atlas Network characterized somatic altera-

tions in colorectal cancer of 276 specimens. They 

found silencing of MLH1 and polymerase e (POLE) 

due to hypermutation, and mutated version of APC, 

TP53, SMAD4, PIK3CA, KRAS, ARID1A, SOX9 and 

FAM123B (Network, 2012). TCGA Integrative analyzes 

suggest new markers for aggressive colorectal carci-

noma and an important role for MYC-directed tran-

scriptional activation and repression.  

In our studied samples, the commonly down-

regulated proteins were very few in number, we ig-

nored them. The network of commonly 79 up-

regulated proteins forms a cluster within the network. 

Cluster analysis showed that the association of MYC 

and CDK4 proteins is very close with other proteins 

within the network (Fig. 3). The association of c-MYC 

and CDK4 proteins has actually been well known 

from in vivo experiment (Lapenna and Giordano, 

2009). Moreover, Myc and Cdk4 is also well estab-

lished therapeutic target in studying different cancers 

(Choi, 2011), but the different forms of MYC (n- and l-

myc) yet to know. It is crucial that MYC plays impor-

tant role in cancer progression by inactivating the 

checkpoints protein such as p53. MYC also activates 

ribosomal and mitochondrial biogenesis, glucose me-

tabolism, glutamine metabolism, lipid synthesis, cell 

cycle progression which is responsible for cancer cell 

growth (Miller et al., 2012; Tansey, 2014). Independent-

ly p21 can promote oncogenesis by promoting the as-

sembly of complexes of cyclin D with Cdk4 (Abbas 

and Dutta, 2009). Aberrant expression of the cell cycle 

associated protein cdk4 in cervical carcinomas 

(Skomedal et al., 1999). The growth of BG-1 ovarian 

cancer cells is promoted by via up-regulation of Cdk4 

genes (Choi, 2011). MYC and Cdk4 are well-known 

drug target against cancer (Hermeking, 2003; Lapenna 

and Giordano, 2009). 

Molecular complex detection 

Molecular complex detection (MCODE) method has 

been used to detect possible modules that could be 

said as molecular complexes. Nevertheless, the rank 

molecules are in a consecutive order as per their score 

value where the number of molecular complexes is 

varied between normal and cancer condition. In all 

cases, possible molecular complex numbers are higher 

in cancer condition except the brain. Molecular com-

plex number is significantly increased (at p-value≤ 

0.05) between normal and cancer conditions (Supple-

mentary file S3). Similar result was also found in pre-

vious studies (at p-value ≤ 0.05) of Islam et al., 2013 

(Islam et al., 2013). The ranked molecular complex 

numbers of normal and cancer protein interaction 

networks are 35 and 31 for brain, 6 and 30 for cervix, 

24 and 30 for lung, 14 and 33 for ovary and 14 and 25 

for prostate, respectively. However, cervix and ovarian 

cancer showed higher increment of the molecular 

complex number during cancer in comparison to 

normal state (Fig. 4). All other tissues molecular com-

plex data has been represented in Supplementary 4 

(S4a1, S4a2; S4b1, S4b2; S4c1, S4c2). The Cancer Ge-

nome Atlas project (TCGA) has analyzed 805 high-

grade serous ovarian cancer and found TP53 muta-

tions in nearly all; several genes mutated at lower fre-

quencies including NF1, BRCA1, BRCA2, RB1 and 

CDK12; and reported NOTCH and FOXM1 signaling 

are involved in serous ovarian cancer (Network, 2012). 

Additionally, TCGA network identified 22 genes for 

which inhibitors already exist were identified in re-

gions of recurrent amplification. 

In our MCODE analysis parameters e.g. scores, nodes 

and edges of the molecular complex networks are also 

varied between normal and cancer condition for each 

tissue. It has already been identified that disease genes 

show higher degree of connectivity in comparison to 

non-disease genes in the cases of expression and inte-

raction of proteins (Jonsson and Bates, 2006). Moreo-

ver, some studies also indicate that in cancer condition 

the protein shows higher degree of connectivity in 

comparison to normal state (Sun and Zhao, 2010).
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Figure 2. Commonly up-regulated and down-regulated proteins in all five cancerous tissues. Y axis: five tissues digital expression 

unit (DEU) in cancer condition and X axis: upregulated and downregulated proteins in cancer condition. 
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Figure 3. Interaction among commonly up-regulated proteins in all five tissues during cancer condition. 
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Figure 4. MCODE analysis of protein interaction network in 4A: Cervix and 4B: ovary for normal and cancerous tissue. 

 

ModuLand study 

Discovery of active modules has shown the way for 

diagnostic and therapeutic interventions. For instance, 

active modules showing the patterns of gene expres-

sion correlated with specific disease phenotypes can 

help to develop valuable biomarkers for disease classi-

fication (Mitra et al., 2013). However, our ModuLand 

study showed thatoverlapping modules between 

normal and cancer states were different for all five 

tissues (Fig. 5). In the brain, numbers of nodes and 

edge forming the overlapping networks were de-

creased in cancer condition (Fig. 5A). But, in other 

cases, the node and the edge number forming the 

overlapping network were increased. The highest fluc-

tuation of overlapping module occurs in case of ovary 

(Fig. 5D). In ovary, the number of nodes forming the 

overlapping module was 5 in normal tissue and 11 in 

cancer. The nodes of the overlapping module can be 

said as the crucial nodes with module centrality of the 

respective network. The important network properties 

of the overlapping modules were also shownthediffe-

rent degree of fluctuation, which has been compared 

(Supplementary file S5: S5a1, S5a2; S5b1, S5b2; S5c1, 

S5c2; S5d1, S5d2; S5e1, S5e2). Module-based bio-

markers achieve greater predictive power and repro-

ducibility over single gene markers, as demonstrated 

for the classification of several forms of cancers in-
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cluding breast cancers (Chuang et al., 2007), ovarian 

cancer (Bapat et al., 2010) and glioblastomas(Miller et 

al., 2011). Because active modules can reveal pathway-

centric insights reinforced by multiple lines of evi-

dence, they naturally provide mechanistic explana-

tions for complex traits and multi-genic diseases like 

cancer. Moreover, active modules can assist in  the 

discovery of drug-target pathways and in predicting 

response to chemotherapy.  

 

Figure 5. The overlapping modules in normal and cancer condition for Brain (5A), cervix (5B), lung (5C), ovary (5D) and prostate 

(5E) tissues. 

 

The correlation among the nodes of the overlapping 

modules was represented by correlation matrix and 

correlation histogram. Correlation matrix represents 

possible interactions of the overlapping modules at a 

certain threshold level (here 1.0). Correlation matrix 

(Supplementary file S6: S6a1, S6a2; S6b1, S562; S6c1, 

S6c2; S6d1, S562; S6e1, S6e2) and histogram indicate 

that the nodes of overlapping modules show different 

degree of interaction in normal and cancer condition 

(Fig. 6). Number of the nodes involved in overlapping 

modules is significantly increased (at p-value≤ 0.01) 

between normal and cancer conditions in all five tis-

sues except brain (Supplementary file S7).  

This study speculates cancer associated complexes 

which are real biologically functional units and leads 

us to stride on the biological reality. However, our 

comprehensive network modularity analysis can ad-

dress the molecular signatures which can be the prom-

ising candidates of drug target for cancer therapy. The 

network modularity robustness, on the other hand, 

can provide a new paradigm to understand the rela-

tionship between cellular networks and cancer de-

meanors. In our study, brain shows different results in 

both detection of molecular complex and detection of 

overlapping modules.  

Unlike other tissues, number of ranked molecular 

complexes and nodes involved in the overlapping 

module are lower in cancer condition. Intriguingly, 

cancers having the protein interaction networks of 

lower molecular complex with less modular signaling 

are more curable than others. Here we considered 

commonly used un-weighted and static network 

which may lower its reliability to understand the real 

the dynamic physical nature of living tissues. The fur-

ther expedition is required for better understanding of 

the networking level of biological processes of cancer.
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Figure 6. Correlation histogram of normal and cancerous tissues of brain (A), cervix (B), lung (C), ovary (D) and prostate (E). 
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