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ABSTRACT
Background: Platelet-rich plasma (PRP) emerges as a promising therapy, exhibiting noticeable
anti-diabetic potential. Nevertheless, the precise underlying mechanism remains enigmatic. In
the current investigation, we aimed to scrutinize the potential therapeutic ramifications of PRP in
alloxan-induced diabetic mice, with a particular focus on its modulation of glycogen metabolism
and glucose transport. Methods: Forty mice were randomly divided into four groups: NC (Con-
trol), PC (PRP treatment), DC (Alloxan dose), and DT (Alloxan+PRP treatment). PRP was adminis-
tered subcutaneously over four weeks, with a frequency of twice-weekly dosing, to diabetic mice.
Results: Our findings illustrate that PRP maintained glucose homeostasis through its modulatory
influence on glycogen metabolism and glucose transporters (Glut2 and Glut4) on the hepatocyte
membrane. PRP substantially reduced hepatic glycogen content significantly (P = 0.0148). More-
over, PRP treatment effectively preserved the structural integrity of hepatic lobules andmaintained
glycogen levels within the cells. There was a substantial increase in glycogen accumulation within
the cytoplasmof liver cells in the diabetic group (DC). However, treatmentwith platelet-rich plasma
(PRP) in the diabetes-treated (DT) group resulted in a marked improvement in glycogen accumu-
lation within liver cells. Conclusion: In aggregate, we concluded that PRP has the potential to
ameliorate hyperglycemia in DM by orchestrating the interplay of glycogen metabolism and glu-
cose transport within the liver, ultimately restoring glycogen deposition in hepatic tissues.
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INTRODUCTION
Diabetes Mellitus (DM) is a global problem char-
acterized by hyperglycemia. It results from insuffi-
cient insulin secretion and/or diminished insulin sen-
sitivity 1. It arises from the intricate interplay of ge-
netic, epigenetic, and lifestyle factors, including ag-
ing, dietary habits, obesity, sedentary living, psycho-
logical stress, and urbanization2. Prolonged exposure
to hyperglycemia is associated with the emergence
of diabetes-related complications, such as nephropa-
thy, neuropathy, retinopathy, and cardiovascular dis-
ease3. Furthermore, poorly controlled DM can lead
to glycogenic hepatopathy, marked by the excessive
accumulation of glycogen within hepatocytes4.
Glycogen synthesis and its degradation are precisely
mediated by enzymes and hormonalmechanisms that
help adapt glycogen metabolism according to the
overall availability of glucose and its demand in the
body 5. The liver, a major glycogen reservoir, intri-
cately governs glucose release and contributes to the
homeostasis of glucose metabolism6. Dysregulation
of these physiological processes is a central feature

of DM, resulting in hyperglycemia during both post-
prandial and fasting states7.
Platelet-rich plasma (PRP) is a blood-derived bioma-
terial that aids in transporting vital growth factors
(GFs) and cytokines from platelet granules to spe-
cific sites, promoting tissue regeneration8. Platelets,
besides their primary role in blood clotting, influ-
ence glycogen metabolism through various mech-
anisms. Upon activation, platelets release growth
factors (GFs) that play a complex role in glyco-
gen metabolism and glucose transport in diabet-
ics9. Platelet-derived growth factors (PDGFs) stim-
ulate glycogen synthesis in hepatocytes and muscle
cells10. Platelet factor 4 (PF4) inhibits glycogenol-
ysis in the liver and muscle. Transforming growth
factor - β (TGF-β ) regulates glycogen synthase and
glycogen phosphorylase activity 11. Moreover, previ-
ous studies have highlighted that PDGFs can impact
glucose transport by either stimulating the expression
of glucose transporters or enhancing glucose uptake
in cells12. They also promote insulin receptor sub-
strate 1 (IRS-1) phosphorylation, enhancing insulin
signaling13. These GFs are also critically important
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for tissue regeneration, from hemostasis to tissue re-
modeling14. Therefore, PRP represents a novel ther-
apeutic avenue for addressing diabetes.
Previous studies have indicated that PRP may ex-
ert its anti-diabetic effects by modulating glucose
metabolism and the Wnt signaling pathway in the
livers of diabetic mice15. Dysregulation of glycogen
metabolism in systemic conditions like DM canman-
ifest histologically in the liver, leading to significant
hepatic dysfunction. However, it remains to be eluci-
dated whether PRP’s anti-diabetic action is mediated
by the regulation of glycogen metabolism. This study
aims to explore the impact of PRP on hepatic glyco-
gen metabolism and assess its histological deposition
in diabetic mice.

METHODS
Animal Care andManagement
The Mus musculus colonies employed in the present
study were raised at the animal housing facility of the
Institute of Zoology, University of the Punjab, Lahore,
Pakistan, as described previously 16. The mice were
housed in stainless steel cages, and standard growth
conditions were maintained, including a light-dark
cycle (12 hours) and temperature (24 – 25 ◦C). They
were provided with regular mouse chow containing
20% protein and had access to water ad libitum. A
seven-day acclimatization period was allowed for the
mice before the commencement of the experiment.
Forty (40) healthy male albino mice (BALB/c), aged
between 6 to 8 weeks, were chosen for the experi-
mental trial. Subsequently, they were randomly as-
signed to four groups (n = 10): the control group
(NC), PRP treated group (PC), alloxan treated dia-
betic group (DC), and alloxan + PRP treated group
(DT). The random group allocation was performed
after a one-week acclimatization period. Ethical ap-
proval for this study was granted by the Ethics Com-
mittee of the University of the Punjab, Lahore, Pak-
istan, under the reference number Ref/D/229/FIMS.

Preparation of PRP
A double centrifugation method was adopted as a
standard protocol to prepare PRP10. EDTA-coated
vacutainers filled with fresh human blood were cen-
trifuged at 1600 revolutions per minute (rpm) for 10
minutes. An upper layer of plasma, a middle buffy
coat, and an inner layer of erythrocytes were formed
in the tubes. The plasma and upper half of the buffy
coat were pipetted out into an Eppendorf tube. The
second centrifugation at 2000 rpm for 10 minutes di-
vided the plasma into two layers. The top platelet-
poor plasma (PPP) was discarded, followed by a mild

shake for the synthesis of homogenized platelet-rich
plasma (Figure 1). The optimal number of platelets
required for a regenerative stimulus lacks an absolute
definition, but approximately 1,000,000 platelets/mL
were used in the current study.

AnimalDosing, Sacrificing, andSampleCol-
lection
The four groups (n = 10) were treated as follows:

• NC: No treatment group.
• PC:This group was treated with PRP (0.5 ml/kg
BW) prepared as described in Figure 115 for
four weeks (PRP administered twice a week).

• DC: A single intraperitoneal dose of alloxan
(150 mg/kg BW) was injected into the mice of
this group to induce diabetes. Glucose levels
were checked after 72 hours using a glucometer,
and 250 mg/kg was considered diabetic. This
group remained untreated after the confirma-
tion of diabetes.

• DT: A similar dose of alloxan was used to in-
duce diabetes. After confirmation, a subcuta-
neous dose of PRP (0.5 ml/kg BW) was admin-
istered twice a week for four weeks.

After a 4-week period of PRP treatment, the mice
were left fasted for 24 hours, and blood was collected
through retro-orbital puncture as described previ-
ously 16. Subsequently, the samples were subjected to
centrifugation at 4,000 revolutions per minute (rpm)
for 15 minutes at 4◦C to isolate the serum and stored
at -80◦C until further analysis17. Following this, the
mice were humanely euthanized using cervical dis-
location. Liver tissues were meticulously excised,
their weights recorded, and then divided into two dis-
tinct samples. One of these samples was promptly
frozen at -80◦C for subsequent analysis, while the
other was preserved in a 10% formaldehyde solution
for histopathological examination.

Biochemical Analysis
The serum insulin was assayed using an ELISA kit
(Catalog Number RAB1317, Merck, Germany) ac-
cording to the manufacturer’s instructions. For hep-
atic glycogen contents, the frozen liver sample was as-
sayed using a biochemical kit (Catalog NumberMET-
5022, Cell Biolabs, USA).

Histological Procedure
To visualize glycogen deposition in the liver, we
employed Periodic Acid-Schiff (PAS) staining.
Formalin-fixed liver samples underwent a gradual
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Figure 1: Illustration of step-by-step harvestation of platelet rich plasma (PRP) by using double centrifuga-
tion. 1st spin separated the plasma from erythrocytes followed by a 2nd spin to get homogenous PRP.

Figure 2: Timeline of the experimental trial. DC and DT were first received a single intraperitoneal Alloxan
dose (150mg/kg BW) followed by PRP treatment (0.5ml/kg BW) to DT group only for four weeks (twice a week).
Abbreviations: NC: Control, PC: PRP treatment, DC: Alloxan induced diabetic group, and DT: Alloxan induced
PRP treated group.

dehydration process before being paraffin-embedded.

Subsequently, these liver specimens were sectioned

into 4 µm slices and subjected to PAS staining.

Photomicrographs of the stained slides were captured

using a light microscope equipped with a portable

’Ease-i-Imageur universal’ camera.

RNA Extraction, Reverse Transcription, and
Real-Time PCR

Total RNA extraction was performed using TRIzol
reagent (Invitrogen, USA) followed by its quantifica-
tion by a NanoDrop instrument (ND-1000, Thermo
Scientific, USA) as previously reported17. Afterward,
cDNA was synthesized using a ready-to-use kit
(RevertAid First Strand cDNA Synthesis Kit, Cat
#K1621, Thermo Scientific). The mRNA expression
of selected genes was quantified using Maxima SYBR
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Green/ROX qPCR Master Mix (K0221, Thermo
Scientific). Previously reported primers were used
after their sequences were verified against the NCBI
Blast database. The sequences were as follows:
(GAPDH) Forward 5-GAAACCTGCCAAGTATGA-
3; Reverse 5-GCTGTAGCCGTATTCATT-3, (Gp)
Forward 5-AGTGAAAATCAACCCAGCCT-3;
Reverse 5-CAGCGATGTTCTTGATCACC-3, (Gs)
Forward 5-CCGGCTTTGGCTGCTTTAT-3; Re-
verse 5-CCGATCCAGAATGTAAATGCC-3, (Glut2)
Forward 5-TTTGCAGTAGGCGGAATGG-3; Re-
verse 5-GCCAACATGGCTTTGATCCTT-3, (Glut4)
Forward 5-CAACTGGACCTGTAACTTCATCGT-3;
Reverse 5-ACGGCAAATAGAAGGAAGACGTA-3.
To assess the relative expression of a specific gene, the
2∆∆Ct method was employed15.

Statistical Analysis
Prism GraphPad 9.1.0 (221) software was used to as-
sess the data. A two-way ANOVA (analysis of vari-
ance) followed by Dunnett’s multiple comparisons
test was used to identify statistically significant differ-
ences among groups CG to DT. P-values < 0.05 (*), <
0.01 (**), < 0.001 (***), or < 0.0001 (****).

RESULTS
Serum insulin andglycogen content in hep-
atocytes
To assess whether the hypoglycemic effects of PRP
were attributable to an enhancement in islet function-
ality, we quantified insulin levels within the serum.
Our analysis revealed a statistically significant differ-
ence between the PRP-treated group (P = 0.0311) and
the diabetic group (P = 0.0001). Furthermore, we in-
vestigated the influence of PRP on hepatic glycogen
deposition by measuring its proportion in the liver.
Notably, in the diabetic group, a significantly elevated
level (P = 0.0012) was observed. Conversely, PRP
treatment in the DT resulted in a substantial reduc-
tion (P = 0.0148) in hepatic glycogen levels (see Fig-
ure 3).

Histology
To confirm the presence of glycogen deposition
within hepatocytes, liver sections were stained with
PAS stain and subsequently observed under a micro-
scope (Figure 4). Glycogen appeared as a distinct
purple-red stain, while cell nuclei were stained light
blue. In the hepatic sections from the control group,
a typical and healthy liver microarchitecture was ob-
served, with no detectable glycogen (Figure 4). Fur-
thermore, the central vein, hepatic sinusoids, portal

vein, and hepatocytes were all found to be structurally
intact.
In contrast, the liver cells of the DC group exhib-
ited a significant accumulation of glycogen within
the cytoplasm, indicating pathological glycogen stor-
age. However, treatment with PRP in the DT group
markedly ameliorated glycogen accumulation within
liver cells. PRP treatment effectively preserved the
structural integrity of the hepatic lobule and main-
tained glycogen levels within the cells, comparable
to those in the NC group. These findings suggest
a therapeutic benefit of PRP in mitigating glycogen
accumulation and preserving hepatic tissue structure
(Figure 4).

Glycogenmetabolism
To gain insights into the molecular mechanisms un-
derlying glycogen metabolism and glucose transport,
we selected four key genes: Gp, Gs, Glut2, and Glut4.
Gp exhibited a statistically significant upregulation in
the DC group (P = 0.0008), while it was significantly
restored in the DT group (P = 0.0069). In contrast,
the expression of Gs showed significant downregula-
tion in DC (P = 0.0021) compared to the NC group
(Figure 5).
The administration of PRP also had a notable impact
on the expressions of Glut2 and Glut4. The DC group
exhibited a significantly elevated expression of Glut2
(P = 0.0018) and Glut4 (P = 0.0049) compared to the
NC group. Conversely, PRP treatment resulted in a
significant upregulation of both Glut2 (P = 0.0175)
andGlut4 (P = 0.0269), yielding promising outcomes.
These findings suggest the potential hypoglycemic ef-
fects of PRP, which may lead to the inhibition of hep-
atic gluconeogenesis enzymes, subsequently reducing
glucose output and enhancing glucose consumption
and clearance.

DISCUSSION
The therapeutic potential of growth factors (GFs) has
been extensively investigated in the context of cell
regeneration18. When administered in the form of
platelet-rich plasma (PRP), these GFs have demon-
strated the capacity to induce protective effects, mod-
ulate oxidative stress, and influence liver enzyme ac-
tivity in alloxan-induced diabetic mice, as well as im-
pact pancreatic microarchitecture19,20. Additionally,
PRP has shown promise in mitigating CCL4-induced
liver injury 21 and promoting the recovery of dam-
aged testicular tissue22. Drawing from these prior in-
vestigations, we posit that the diverse bioactive com-
ponents present in PRP collectively synergize to elicit
anti-diabetic effects. These effects are characterized
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Figure 3: Effect of PRP treatment on a) serum insulin and b) Hepatic glycogen content of the alloxan-
induced diabetic mice over the duration of the experiment. C and DT were first received a single intraperi-
toneal Alloxan dose (150 mg/kg BW) followed by PRP treatment (0.5 ml/kg BW) to DT group only for four weeks
(twice a week). Statistically significant difference among groups is manifested in graph (n = 5). Abbreviations:
NC: Control, PC: PRP treatment, DC: Alloxan induced diabetic group, and DT: Alloxan induced PRP treated group.
*P≥ 0.05, **P≥ 0.01, ***P < 0.001; Mean± S.E.M

by improvements in insulin resistance, modulation of
glycogen metabolism, and enhanced glucose uptake
within hepatocytes.
In our study, we observed significant differences in
serum insulin levels among PRP-treated DT and DC
groups after four weeks of treatment. There was a de-
cline in DC compared to NC, and it was restored in
DT compared to DC after PRP treatment. A similar
pattern has been consistently observed in prior inves-
tigations, suggesting that platelet-rich plasma (PRP)
therapy may potentiate insulin secretion, possibly by
enhancing pancreatic microarchitecture and rejuve-
nating beta cell functionality 19,23.
In histopathological examination, a conspicuous ac-
cumulation of glycogenwas readily discernible within
the tissues of the alloxan-induced diabetic group
(DC). This finding aligns with the observations re-
ported in a prior study 24. In hepatocytes, there is
excessive accumulation of glycogen, as illustrated in
Figure 4. This phenomenon arises due to the insulin-
independent influx of glucose into hepatocytes dur-
ing episodes of hyperglycemia, subsequently followed
by insulin-mediated conversion into hepatic glyco-
gen4,25. It is worth noting that elevated levels of both
glucose and insulin are essential for this process to
occur. Notably, our investigation demonstrates that
PRP treatment results in a substantial reduction in
glycogen content when comparing DT to DC.

To gain insights into the role of glycogen metabolism
in DM, the expression of two key genes, Gp and Gs,
was evaluated. Consistent with previous findings, up-
regulation was observed in Gp while the expression
of Gs was downregulated in DC26. Dysregulation in
glycogen metabolism may result in abnormal accu-
mulation of glycogen in hepatic tissues observed in
the current study (Figure 4). PRP treatment in di-
abetic mice dramatically increased glycogenolysis in
the liver, as the expression of Gp was restored com-
pared to the DC group. The mechanism behind the
restoration of hepatic glycogen accumulation in DM
is uncertain; it might be related to the ameliorating
effect of GFs of PRP on pancreatic architecture23, fol-
lowed by an increase in insulin secretion that modu-
lates glycogen metabolism.
To demonstrate the role of glucose transporters in glu-
cose homeostasis, the expression of Glut2 and Glut4
was assessed, and a significant decline was observed
in alloxan-induced diabetic mice. PRP treatment in
the DT group displayed promising restoration in their
expression to near the standard value of theNCgroup.
These outcomes highlighted the impact of PRP on
manipulating Glut2 and Glut4 tasks, thus enhanc-
ing glucose uptake and improving diabetic condi-
tions. This phenomenon may result in the suppres-
sion of the expression of pivotal gluconeogenic en-
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Figure 4: Histological assesment of hepatic microarchitecture. (A) Microphotographs of PAS-stained sections
of liver tissues, (B) Glycogen deposotion, and (C) Bipolar nuclei in hepatic tissues. Abbreviations: NC: Normal
groups, PC: PRP Control group, DC: Diabetic group, DT: Diabetic mice treated with PRP (0.5 ml/kg BW). Central
vein (cv), bipolar nuclei (yellow arrow), Sinusoidal spaces (green arrow), andGlycopen deposition (red arrow)were
marked. Magnification: 40x and 100x.

zymes within the hepatic system, subsequently lead-
ing to a decrease in hepatic glucose production while
simultaneously promoting increased glucose utiliza-
tion and clearance27. PRP administration could as-
sist glucose uptake in hepatocytes by encouraging the
translocation of Glut2 and Glut4, which might par-
tially cause the hypoglycemic potential of PRP in di-
abetic mice. Moreover, baseline platelet count, dif-
ferent dosages, and frequency of PRP administration
can affect the potency of PRP therapy and could yield
varying results28.

CONCLUSIONS
Current investigations have explored the physio-
logical role of GFs in improving hepatic architec-
ture and regulating glucose homeostasis via glyco-
gen metabolism and glucose transport in diabetic
mice. Although the exact mechanisms of these GFs
and their therapeutic effects have not been identified,
these effects aremainly attributed to their release from
platelets and activation. However, this assumption
needs further investigation.

Platelet-rich plasma is a cocktail of growth factors.
However, the specific factors responsible for its ther-
apeutic activity have not yet been identified. This
incomplete knowledge of the exact composition and
mode of action of PRP limits the ability to draw con-
crete conclusions about the efficacy of PRP therapy.
Moreover, although the current study provides valu-
able insights from the mouse model, it does not ad-
dress the absence of clinical data. Given the promising
results in the current study and the consistent find-
ings from prior investigations, we conclude the cru-
cial role of growth factors in PRP and recommend the
need for further investigation to explore the therapeu-
tic potential of PRP in diabetes mellitus (DM).

ABBREVIATIONS
ANOVA - Analysis of Variance, BW - Body Weight,
cDNA - Complementary DNA, DC - Diabetic Con-
trol group, DM - Diabetes Mellitus, DT - Diabetic
mice treated with PRP, EDTA - Ethylenediaminete-
traacetic Acid, ELISA - Enzyme-Linked Immunosor-
bent Assay, GAPDH - Glyceraldehyde 3-phosphate
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Figure 5: Effects of PRP treatment on mRNA expression of (A) Gp, (B) Gs, (C) Glut2 and (D) Glut4. DC and
DT were first received a single intraperitoneal Alloxan dose (150mg/kg BW) followed by PRP treatment (0.5ml/kg
BW) to DT group only for four weeks (twice a week). The relativemRNA levels were normalized to GAPDH (loading
control). Abbreviations: NC: Control, PC: PRP treatment, DC: Alloxan induced diabetic group, and DT: Alloxan
induced PRP treated group. *P≥ 0.05, **P≥ 0.01, ***P < 0.001; Mean± S.E.M.

dehydrogenase (a reference gene),GFs - Growth Fac-
tors, Glut2 - Glucose Transporter type 2, Glut4 -
Glucose Transporter type 4, IRS-1 - Insulin Recep-
tor Substrate 1, NC - Normal Control, PAS - Peri-
odic Acid-Schiff, PC - PRP Control group, PDGFs -
Platelet-Derived Growth Factors, PF4 - Platelet Fac-
tor 4, PPP - Platelet-Poor Plasma, PRP - Platelet-rich
plasma, qPCR -Quantitative Polymerase ChainReac-
tion, rpm - Revolutions PerMinute, S.E.M - Standard
Error of the Mean, TGF-β - Transforming Growth
Factor Beta
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