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Abstract— Three-dimensional (3D) cultures are becoming increasingly popular due to their ability to mimic tissue-
like structures more effectively than monolayer cultures. In cancer research, the natural tumor characteristics and 
architecture are more closely mimicked by 3D cell models. Thus, 3D cell cultures are more promising and suitable 
models, particularly for in vitro drug screening to predict in vivo efficacy. Different methods have been developed to 
create 3D cell culture systems for research application. This review will introduce and discuss 3D cell culture 
methods most popularly used in drug screening. The potential applications of these systems in anticancer drug 
screening will also be discussed. 
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INTRODUCTION 

Cancer is one of leading causes of death worldwide 

with 14 million new cases and 8.2 million deaths in 

2012 (2014). Numerous efforts have been aimed at 

finding new and more effective ways to treat cancer. 

Among these strategies is screening of anticancer 

drugs. Standard screening has typically been 

evaluated in animal models. However, some results 

have shown that animal experiments do not always 

predict clinical outcome in humans, especially with 

regard to toxicity assessments (Knight, 2008). 

Moreover, the use of animals for research is often 

restricted due to ethical concerns (Festing, 2007). In 

light of these issues, an in vitro cell-based model is 

great alternative, minimizing the need for and number 

of animal experiments. 2D cell culture was the first 

procedure established for cell-based screening assays. 

Although 2D cell culture methods are simple, quick 

and cost-effective to set up, and have been widely 

investigated, there remain many disadvantages. The 

primary disadvantage of a 2D system is that it does 

not mimic an actual 3D tumor and is not biologically 

relevant (Carrie J. Lovitt, 2014). Cells in the in 

vivoenvironment usually interact with neighboring 

cells and the extracellular matrix (ECM); however, 2D 

cell models cannot recapitulate those characteristics. 

Thus, a 2D culture model may be starkly different 

from an actual growing tumor with regards to cell 

morphology, cell proliferation, and gene and protein 

expression (Edmondson et al., 2014). As a result, only 

10% of the drugs passed through in vitro testing have 

had a positive effect in the clinic, or led to drug 

approval. The percentage of anticancer drugs which 

have shown clinical efficacy is even lower, at about 5% 

(Westhouse, 2010). The high rate failure in the clinical 

testing phase is a waste of time and money. Therefore, 

it is important to identify promising in vitro culture 

models for evaluating drug efficacy in the early stages 

of drug discovery and development (Wong et al., 

2012). Given the advantages of 3D versus 2D cell 

culture models, 3D cell culture techniques garnered 

increasing attention. The number of publications 

related to 3D cell cultures have rapidly increased in 

the last decade- from 7 publications in 1992 to 421 in 
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2013 (Ferro et al., 2014; Ravi et al., 2015). The 3D cell 

culture systems allow cell-based assays to be more 

physiologically relevant, particularly since cell 

behavior in 3D culture is much more similar to that of 

cells in in vivo tissues. In 3D models, cell-cell and cell-

ECM interactions are maintained, such that cell 

morphology, proliferation, differentiation, migration, 

apoptosis, gene expression and protein expression are 

comparable to those of cells in vivo(Edmondson et al., 

2014). 

 

 

WHY 3D CULTURE? 

Cell-based assays play a critical role in anticancer 

drug screening. Traditionally, 2D cell culture was 

widely used in cancer drug discovery. However, a 

large number of drugs reported to have strong 

anticancer effect in 2D cell culture models failed in 

clinical tests (Xu and Burg, 2007). In 2011, although 

approximately 900 antineoplastic agents had passed 

through cell-based assay testing, only 12 were 

approved by the FDA after clinical testing (America, 

2011; Kantarjian et al., 2013). 

In recent years, the potential and critical role of 3D 

cultures in cancer research have gained greater 

interest. Through the use of sophisticated 3D 

multicellular tumor spheroid (MCTS) systems, the 

microenvironment, phenotype and cellular 

heterogeneity of tumors are effectively represented 

(Thoma et al., 2014). MCTS systems create a gradient 

of oxygen and nutrients from the outside of tumor 

spheroids to the core. Spheroids in MCTS systems are 

constructed with different zones of cells, including 

proliferating cells on the outside, quiescent viable cells 

in the middle, and necrotic cells at the inner core (Fig. 

1), which realistically mimic in vivo tumors (Ma et al., 

2012). Many research studies have shown that the 

genotypic profile of cells in MCTS, versus cells grown 

in monolayer, are more similar to in vivo tumors 

(Smith et al., 2012). Cells in 3D culture conditions were 

found to exhibit gene expression profiles different to 

those grown in monolayer (Luca et al., 2013; Myungjin 

Lee et al., 2013). This may be a primary reason as to 

why results of anticancer drug assessments using 

MCTS are more predictive of clinical efficacy than 2D 

cell assessments (Carver et al., 2014).  

 

Figure 1. The structure of MCTS with different zones of 

cells. From inside to outside, the regions are: necrotic zone 

(innermost), quiescent viable cell zone (middle), and 

proliferating zone (outermost).  

 

Many antineoplastic agents have been reported to be 

less effective for cancer cells cultured in 3D than 2D 

(Frankel et al., 2000; Imamura et al., 2015; Karlsson et 

al., 2012). The architectural structure of MCTS is the 

main reason for this difference. Firstly, the 3D 

structure of MCTS reduces the number of cancer cells 

exposed to anticancer agents; these drugs have more 

accessibility to cells in monolayer culture (Carrie J. 

Lovitt, 2014). Secondly, the tightly adhered cells and 

ECM in MCTS can limit drug penetration (Frankel et 

al., 2000). Moreover, the hypoxic core generates a G0-

dormant cell population which is highly resistant to 

chemotherapy (Imamura et al., 2015). Gene expression 

of cells cultured in 3D systems differs from that of 

cells in 2D monolayer; for instance, expression of 

genes related to chemoresistance has been found to 

vary from 3D versus 2D systems (Lin and Chang, 

2008). Studies in breast cancer (Howes et al., 2014a) 

and colon cancer (Luca et al., 2013) have demonstrated 

decreased epidermal growth factor (EGFR) and 

human epidermal growth factor (HER) activation in 

cells cultured in 3D versus 2D. This could cause 

decreased sensitivity to anticancer drugs targeting 

EGFR and HE, and has been observed in 3D cell 

systems. On the other hand, some drugs show equal, 

or even greater, therapeutic effect in 3D models 

compared to 2D (Hongisto et al., 2013; Howes et al., 

2007; Pickl and Ries, 2009). The absence of a hypoxic, 

necrotic core in 2D culture models makes cells more 

resistant to antineoplastic agents, which are effectively 

activated by hypoxic conditions of 3D tumors; 

tirapazamine (TPZ) is an example of this kind of drug 

(Tung et al., 2011). Given that 3D models not only 

mimic tumor architecture but mimic similar 

environmental challenges, these models are great and 

conservative systems to study candidate drug. 
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Figure 5. Components of a general bioreactor. Spinner flask (a) (Image source: www.sigmaaldrich.com) and NASA rotating wall 

vessel (b) (Image source: www.genengnews.com). 

 

Bioreactors are labor-intensive due to their ability to 

produce a large number of spheroids (Tostoes et al., 

2012). However, the created spheroids are usually 

heterogeneous in size and cell population (Mehta et 

al., 2012). Therefore, a manual selection would be 

required afterward to select suitably sized spheroids 

for re-plating onto dishes for drug screening assays, if 

the similarity of spheroid size is required (Breslin and 

O'Driscoll, 2013). Although generation of spheroids 

via bioreactors requires expensive instruments (Kim et 

al., 2004) and high quality of medium, the advantages 

of bioreactors for long-term culture is undeniable 

(Ebrahimkhani et al., 2014).  

 

APPLICATIONS IN ANTICANCER 
DRUG SCREENING 

Cell culture systems have long been a foundation for 

testing and comparing the cytotoxicity and 

pharmacodynamics of anticancer drug candidates. 

Even now, many results from 3D cell culture have 

consistently stressed the importance of these models 

in drug screening. Research by Jayme L. Horning et 

al., published in 2008, indicated that 3D MCF7 cells 

were more resistant to many popular anticancer drugs 

(e.g. doxorubicin, paclitaxel and tamoxifen) compared 

with MCF7 cells cultured in monolayer. Using 

polymeric microparticle surfaces to create 3D tumors, 

they found that 2D MCF7 cells were significantly 

more sensitive to these drugs than 3D MCF7 cells, 

with a 12- to 23- fold disparity in the IC50 values. The 

study also showed that the sum of collagen in the 3D 

model was 2 times greater than that of 2D condition 

and the expression of many genes were different, 

possibly accounting for the difference in responses to 

the drugs (Horning et al., 2008). Vesa Hongisto et al. 

suggested in their 2013 studies that 3D cell models can 

effectively replace traditional 2D cell monolayers and 

that with regard to screening of drug compounds, 3D 

models provide better comparability to clinical results. 

In their study, 102 compounds were tested on JIMT1 

breast cancer cells. Results showed that JIMT1 cells 

were significantly more sensitive to 63 compounds 

when cultured on Matrigel as compared to 2D 

condition (Hongisto et al., 2013). Using 96-well round-

bottom ultra-low attachment plates to create 3D 

cancer tumors, Amy L. Howes et al. showed, from 

their studies in 2014, that 3D BT-474 cells were more 

sensitive to lapatinib, gefitinib, vinblastine and 

vinorelbine than 3D MCF-10A cells. The authors also 

found that microtubule-targeting agents and 

epidermal growth factor receptor (EGFR) inhibitors 

are two classes of compounds to have selective effects 

on cancer cells in 3D culture (Howes et al., 2014b). 

Work by Yukie Yoshii et al., published in 2016, on 

human colon cancer HCT116 cell line demonstrated 

that regorafenib was most effective on 3D HCT116-

RFP cells among 8 drugs tested (capecitabine, 

bevacizumab, irinotecan, cetuximab, 5-fluorouracil (5-

FU), panitumumab, oxaliplatin and regorafenib). 

Based on their 3D culture studies, the authors were 

able to demonstrate effective and non-effective drugs 

for colon cancer treatment (Yoshii et al., 2016). 

 

CONCLUSION 

Anticancer drug screening is an important component 

in the fight against cancer. Several 3D cell culture 

(a
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systems have been developed as suitable platforms for 

drug screening and are serve as more reliable models 

for in vitro testing, compared to 2D, given that MCTS 

have greater structural similarity and cellular zone 

components to in vivo tumors. The 3D model systems 

should provide more accurate results for prediction of 

clinical outcome. Tremendous efforts have been made 

to establish various 3D cell culture systems. It is 

important for researchers to look carefully at the 

advantages and disadvantages of each to find the 

most suitable system for their studies. However, all 

the 3D systems can be utilized for cancer research, 

particularly for testing of new anticancer agents.  
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