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Abstract— Three-dimensional (3D) cultures are becoming increasingly popular due to their ability to mimic tissue-

like structures more effectively than monolayer cultures. In cancer research, the natural tumor characteristics and

architecture are more closely mimicked by 3D cell models. Thus, 3D cell cultures are more promising and suitable

models, particularly for in vitro drug screening to predict in vivo efficacy. Different methods have been developed to

create 3D cell culture systems for research application. This review will introduce and discuss 3D cell culture

methods most popularly used in drug screening. The potential applications of these systems in anticancer drug

screening will also be discussed.

Keywords: 3D culture, anticancer, drug screening, mimic tissue-like structure

INTRODUCTION

Cancer is one of leading causes of death worldwide
with 14 million new cases and 8.2 million deaths in
2012 (2014). Numerous efforts have been aimed at
finding new and more effective ways to treat cancer.
Among these strategies is screening of anticancer
drugs. Standard screening has typically been
evaluated in animal models. However, some results
have shown that animal experiments do not always
predict clinical outcome in humans, especially with
regard to toxicity assessments (Knight, 2008).
Moreover, the use of animals for research is often
restricted due to ethical concerns (Festing, 2007). In
light of these issues, an in vitro cell-based model is
great alternative, minimizing the need for and number
of animal experiments. 2D cell culture was the first
procedure established for cell-based screening assays.
Although 2D cell culture methods are simple, quick
and cost-effective to set up, and have been widely
investigated, there remain many disadvantages. The
primary disadvantage of a 2D system is that it does
not mimic an actual 3D tumor and is not biologically

relevant (Carrie ]. Lovitt, 2014). Cells in the in
vivoenvironment usually interact with neighboring
cells and the extracellular matrix (ECM); however, 2D
cell models cannot recapitulate those characteristics.
Thus, a 2D culture model may be starkly different
from an actual growing tumor with regards to cell
morphology, cell proliferation, and gene and protein
expression (Edmondson et al., 2014). As a result, only
10% of the drugs passed through in vitro testing have
had a positive effect in the clinic, or led to drug
approval. The percentage of anticancer drugs which
have shown clinical efficacy is even lower, at about 5%
(Westhouse, 2010). The high rate failure in the clinical
testing phase is a waste of time and money. Therefore,
it is important to identify promising in vitro culture
models for evaluating drug efficacy in the early stages
of drug discovery and development (Wong et al,
2012). Given the advantages of 3D versus 2D cell
culture models, 3D cell culture techniques garnered
increasing attention. The number of publications
related to 3D cell cultures have rapidly increased in
the last decade- from 7 publications in 1992 to 421 in
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2013 (Ferro et al.,, 2014; Ravi et al., 2015). The 3D cell
culture systems allow cell-based assays to be more
physiologically relevant, particularly since cell
behavior in 3D culture is much more similar to that of
cells in in vivo tissues. In 3D models, cell-cell and cell-
ECM interactions are maintained, such that cell
morphology, proliferation, differentiation, migration,
apoptosis, gene expression and protein expression are
comparable to those of cells in vivo(Edmondson et al.,
2014).

WHY 3D CULTURE?

Cell-based assays play a critical role in anticancer
drug screening. Traditionally, 2D cell culture was
widely used in cancer drug discovery. However, a
large number of drugs reported to have strong
anticancer effect in 2D cell culture models failed in
clinical tests (Xu and Burg, 2007). In 2011, although
approximately 900 antineoplastic agents had passed
through cell-based assay testing, only 12 were
approved by the FDA after clinical testing (America,

2011; Kantarjian et al., 2013).

In recent years, the potential and critical role of 3D
cultures in cancer research have gained greater
interest. Through the wuse of sophisticated 3D
multicellular tumor spheroid (MCTS) systems, the
microenvironment, phenotype and cellular
heterogeneity of tumors are effectively represented
(Thoma et al., 2014). MCTS systems create a gradient
of oxygen and nutrients from the outside of tumor
spheroids to the core. Spheroids in MCTS systems are
constructed with different zones of cells, including
proliferating cells on the outside, quiescent viable cells
in the middle, and necrotic cells at the inner core (Fig.
1), which realistically mimic in vivo tumors (Ma et al.,
2012). Many research studies have shown that the
genotypic profile of cells in MCTS, versus cells grown
in monolayer, are more similar to in vivo tumors
(Smith et al., 2012). Cells in 3D culture conditions were
found to exhibit gene expression profiles different to
those grown in monolayer (Luca et al., 2013; Myungjin
Lee et al., 2013). This may be a primary reason as to
why results of anticancer drug assessments using
MCTS are more predictive of clinical efficacy than 2D
cell assessments (Carver et al., 2014).
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Figure 1. The structure of MCTS with different zones of
cells. From inside to outside, the regions are: necrotic zone
(innermost), quiescent viable cell zone (middle), and
proliferating zone (outermost).

Many antineoplastic agents have been reported to be
less effective for cancer cells cultured in 3D than 2D
(Frankel et al., 2000; Imamura et al., 2015; Karlsson et
al., 2012). The architectural structure of MCTS is the
main reason for this difference. Firstly, the 3D
structure of MCTS reduces the number of cancer cells
exposed to anticancer agents; these drugs have more
accessibility to cells in monolayer culture (Carrie ].
Lovitt, 2014). Secondly, the tightly adhered cells and
ECM in MCTS can limit drug penetration (Frankel et
al., 2000). Moreover, the hypoxic core generates a GO-
dormant cell population which is highly resistant to
chemotherapy (Imamura et al., 2015). Gene expression
of cells cultured in 3D systems differs from that of
cells in 2D monolayer; for instance, expression of
genes related to chemoresistance has been found to
vary from 3D versus 2D systems (Lin and Chang,
2008). Studies in breast cancer (Howes et al., 2014a)
and colon cancer (Luca et al., 2013) have demonstrated
decreased epidermal growth factor (EGFR) and
human epidermal growth factor (HER) activation in
cells cultured in 3D versus 2D. This could cause
decreased sensitivity to anticancer drugs targeting
EGFR and HE, and has been observed in 3D cell
systems. On the other hand, some drugs show equal,
or even greater, therapeutic effect in 3D models
compared to 2D (Hongisto et al., 2013; Howes et al.,
2007; Pickl and Ries, 2009). The absence of a hypoxic,
necrotic core in 2D culture models makes cells more
resistant to antineoplastic agents, which are effectively
activated by hypoxic conditions of 3D tumors;
tirapazamine (TPZ) is an example of this kind of drug
(Tung et al.,, 2011). Given that 3D models not only
mimic tumor architecture but mimic similar
environmental challenges, these models are great and
conservative systems to study candidate drug.
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Although MCTS is still an in vitro model, its similarity
to an in vivo tumor environment allows for a more
accurate model to study drug efficacy while
minimizing the cost of failed clinical trials.

PLATFORMS OF 3D CELL
CULTURE SYSTEMS USED FOR
ANTICANCER DRUG SCREENING

Due to the advantages of 3D culture systems, there
have been many studies focused on the development
and optimization of 3D cell culture technologies. Up
until now, there have been several types of 3D culture
models, some of which have been used for anticancer
drug screening.

Liquid overlay culture

Liquid overlay culture (LOC) is the simplest method
of 3D cell culture (Enmon et al., 2001). To generate
models, cell culture plates or flasks are covered with a
thin layer of inert substrates, such as agar(Vinci et al.,
2012), agarose(Friedrich et al., 2009),
polyHEMA (Friedrich et al., 2007) or Matrigel(C. S.
SHIN 2013). By preventing matrix deposition, LOC
easily promotes 3D aggregates or spheroids(Carlsson
and Yuhas, 1984). This technique is low cost and
highly = reproducible without requirement of
sophisticated equipment (Costa et al., 2014). Different
cell types can be co-cultured with this method
(Metzger et al.). However, it is difficult to monitor the
number and size of formed spheroids (Lin and Chang,
2008).

Ultra-low attachment plates have been developed as
the commercial product of the liquid overlay
technique, bypassing the requirement for manual
coating. Dishes are designed with a layer of
hydrophilic polymer inside, which prevents cells from
attaching to the surface. This technique can overcome
the limit of culture in gel, has the potential to produce
one spheroid per well, and is suitable for medium-
throughput screening (Thoma et al., 2014).

Hanging drop

The hanging drop technique was first developed by
Johannes Holtfreter in 1944 for cultivating embryonic
stem cells. It has also become the foundation of the
non-scaffold method for the multicellular spheroid
generation. In the beginning, the petri dish lid was
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used to generate spheroids by dropping a small
volume of cell suspension (15- 30 uL) onto the lid and
then inverting it. Due to surface tension, droplets were
maintained and cells in the droplets spontaneously
aggregated to form spheroids (Lin and Chang, 2008).
Today, there are many types of commercial devices
designed for hanging drop cultures (Fig. 2).
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Figure 2. The general structure of a hanging drop plate (a).
Hanging drop formation process (b). (Image source:
www.3dbiomatrix.com).

This technique has many advantages, including being
cost-effective, easy to generate one spheroid per well,
and easy to control the size of spheroids. Moreover,
different cell types can be cocultured and generated
into spheroids at high-throughput using liquid
handling systems (Hsiao et al., 2012; Kelm et al., 2003;
Pham, 2015; Yip and Cho, 2013). However, it is
difficult to maintain spheroids and change the
medium due to the limited volume of droplets (Mehta
etal, 2012).

Microtechnology

In the last few years, microtechnologies have attracted
the attention of scientists, particularly with regard to
the use of microtechniques to generate 3D cell models
(Hirschhaeuser et al., 2010).

The photolithography technique is one exampleand
used to create micropattern surface plates with special
surfaces, including attaching and non-attaching areas.
Seeded cells are guided to grow and form 3D
structureson the adhesion islands. The size and shape
of spheroids rely on the design of the attachment sites
(Fig. 3) (Degot et al., 2010).
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Figure 3. A whole range of micropatterns for diverse applications (Image Source: CYTOO Cell Architects).

Figure 4. Various types of microwell plates (Image source: Elplasia; Kuraray Co., Ltd.)

Microwell plates are designed with the bottom
containing a large number of microsize chambers,
which vary in shape, e.g. round, square, honeycomb,
slit and multiple pores(Larson, 2015) (Fig. 4). Under
gravity and hydrodynamic forces, cells are located in
tiny wells and then concentrated to form 3D structure
with dimensions and geometry specific to each type of
microwell (Karp et al., 2007).

Microtechnologies,  including  microwells and
micropattern surfaces, are promising for producing
mass production of controlled sized spheroids. It is
possible to co-culture different type of cells through
the requirement of special and expensive equipment
(Lin and Chang, 2008).

Bioreactor

When the important role of 3D cultures in testing
chemical effects of anticancer drugs was discovered,
scale-up screening from laboratory to industrial scale
became a critical next step. Bioreactors became part of
the standard process for spheroid generation as they
provided  greater = production  control and
reproducibility (Ou and Hosseinkhani, 2014). In a

typical process, spheroids are formed in bioreactors
via continuous moving fluid (Breslin and O'Driscoll,
2013). The dynamic culture condition is mainly
created by stirring (spinner flask) or rotating (NASA
rotating wall vessel) (C. S. SHIN 2013).

The modern glass spinner flask was first developed by
W.F. McLimans in 1957 (Mc et al, 1957). Cell
suspension was contained in flasks, which were
designed with two arms and could be opened for gas
exchange; a stir bar was used for stirring the fluid
(Delphine Antoni 2015) (Fig. 5a). In 1990, rotating wall
vessels (RWVs) were made for cell culture by NASA
(National Aeronautics and Space Administration) (K.
C. O'Connor’, 2013). RWVs are constructed of an inner
cylinder, a chamber of rotating concentric cylinders
for growing cells, and a membrane for gas exchange
(Rauh et al, 2011) (Fig. 5b). The low shear
environment of RWVs creates larger sized spheroids
than spinner flasks (Lelkes and Cherian, 1998). HepG2
spheroids formed in RWVs reach 100 um in diameter
after 72 h of culture and up to 1 mm in diameter after
long-term culture (Chang and Hughes-Fulford, 2009).
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Figure 5. Components of a general bioreactor. Spinner flask (a) (Image source: www.sigmaaldrich.com) and NASA rotating wall
vessel (b) (Image source: www.genengnews.com).

Bioreactors are labor-intensive due to their ability to
produce a large number of spheroids (Tostoes et al.,
2012). However, the created spheroids are usually
heterogeneous in size and cell population (Mehta et
al.,, 2012). Therefore, a manual selection would be
required afterward to select suitably sized spheroids
for re-plating onto dishes for drug screening assays, if
the similarity of spheroid size is required (Breslin and
O'Driscoll, 2013). Although generation of spheroids
via bioreactors requires expensive instruments (Kim et
al., 2004) and high quality of medium, the advantages
of bioreactors for long-term culture is undeniable
(Ebrahimkhani et al., 2014).

APPLICATIONS IN ANTICANCER
DRUG SCREENING

Cell culture systems have long been a foundation for
testing and comparing the cytotoxicity and
pharmacodynamics of anticancer drug candidates.
Even now, many results from 3D cell culture have
consistently stressed the importance of these models
in drug screening. Research by Jayme L. Horning et
al., published in 2008, indicated that 3D MCEF7 cells
were more resistant to many popular anticancer drugs
(e.g. doxorubicin, paclitaxel and tamoxifen) compared
with MCF7 cells cultured in monolayer. Using
polymeric microparticle surfaces to create 3D tumors,
they found that 2D MCF7 cells were significantly
more sensitive to these drugs than 3D MCEF7 cells,
with a 12- to 23- fold disparity in the IC50 values. The
study also showed that the sum of collagen in the 3D
model was 2 times greater than that of 2D condition
and the expression of many genes were different,

possibly accounting for the difference in responses to
the drugs (Horning et al., 2008). Vesa Hongisto et al.
suggested in their 2013 studies that 3D cell models can
effectively replace traditional 2D cell monolayers and
that with regard to screening of drug compounds, 3D
models provide better comparability to clinical results.
In their study, 102 compounds were tested on JIMT1
breast cancer cells. Results showed that JIMT1 cells
were significantly more sensitive to 63 compounds
when cultured on Matrigel as compared to 2D
condition (Hongisto et al., 2013). Using 96-well round-
bottom ultra-low attachment plates to create 3D
cancer tumors, Amy L. Howes et al. showed, from
their studies in 2014, that 3D BT-474 cells were more
sensitive to lapatinib, gefitinib, vinblastine and
vinorelbine than 3D MCF-10A cells. The authors also
found that microtubule-targeting agents and
epidermal growth factor receptor (EGFR) inhibitors
are two classes of compounds to have selective effects
on cancer cells in 3D culture (Howes et al., 2014b).
Work by Yukie Yoshii et al, published in 2016, on
human colon cancer HCT116 cell line demonstrated
that regorafenib was most effective on 3D HCT116-
RFP cells among 8 drugs tested (capecitabine,
bevacizumab, irinotecan, cetuximab, 5-fluorouracil (5-
FU), panitumumab, oxaliplatin and regorafenib).
Based on their 3D culture studies, the authors were
able to demonstrate effective and non-effective drugs
for colon cancer treatment (Yoshii et al., 2016).

CONCLUSION

Anticancer drug screening is an important component
in the fight against cancer. Several 3D cell culture
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systems have been developed as suitable platforms for
drug screening and are serve as more reliable models
for in vitro testing, compared to 2D, given that MCTS
have greater structural similarity and cellular zone
components to in vivo tumors. The 3D model systems
should provide more accurate results for prediction of
clinical outcome. Tremendous efforts have been made
to establish various 3D cell culture systems. It is
important for researchers to look carefully at the
advantages and disadvantages of each to find the
most suitable system for their studies. However, all
the 3D systems can be utilized for cancer research,
particularly for testing of new anticancer agents.
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