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Murine Models of Allergic Asthma: Methodological Insights into
Allergen Sensitization and Challenge Protocols
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ABSTRACT
Asthma represents a chronic inflammatory airway disease with a steadily increasing global preva-
lence in recent decades. Animal models have proven invaluable in elucidating the underlying dis-
ease mechanisms and identifying innovative therapeutic approaches. The murine model is ex-
tensively used to investigate key characteristics of allergic asthma, including airway inflammation,
airway hyperresponsiveness (AHR), and airway remodeling. Classic protocols involving sensitizing
and challenging animals with different types of allergens and modes of administration are major
factors in inducing asthmatic features in a mouse model. The present review critically analyzes the
commonly used sensitization and allergen challenge protocols for inducing acute and chronic in-
flammation in the airways of mouse models of asthma, emphasizing their potential in advancing
therapeutic development for allergic asthma studies.
Key words: Asthma, acute mouse model, chronic mouse model, sensitization, and challenge

INTRODUCTION
Asthma affects approximately 300 million people
globally and continues to exhibit a rising trend ev-
ery year1. Its intricate nature arises from a com-
plex interplay of genetic and environmental fac-
tors2. Allergic asthma, the typical phenotype in
clinical asthma, is triggered by allergen exposure,
manifesting as a chronic inflammatory disorder af-
fecting the airways. Key features of asthma in-
clude airway inflammation, eosinophilia, goblet cell
hypersecretion, airway hyperresponsiveness (AHR),
and airway remodeling3.
The cellular and biochemical processes underlying
the development of allergic airways, associated with
airway inflammation and remodeling, have been in-
vestigated in clinical and animal studies4. Studying
asthma in humans is ethically challenging, although
it is the best approach to understand the pathophys-
iology of the disease and to investigate drug effi-
cacy for new drug development in allergic asthma.
Hence, the utilization of animal models is essential
for a comprehensive understanding of the disease,
notwithstanding their limitations in replicating the
complexity of human asthma.
The mouse model is widely employed to investigate
the involvement of various cells and mediators, as
well as structural and physiological manifestations
of allergic asthma progression. This review focuses
on the establishment of allergic asthma, incorporat-
ing different types of allergens and administration

methods during sensitization and challenge in an
asthmatic mouse model.

ALLERGIC-INDUCED TYPE 2
EOSINOPHILIC ASTHMA
In general, asthma is categorized into type 2 and
non-type 2 inflammation based on distinct endo-
types (Figure 1). Airway inflammation in type
2 immune response-driven asthma is phenotypi-
cally expressed as eosinophilic asthma, while non-
type 2 immune response-driven asthma is character-
ized as neutrophilic asthma and paucigranulocytic
asthma5.
Eosinophilic asthma is marked by increased
eosinophil production and infiltration in the air-
ways in response to an allergen. In type 2 immune
response-driven asthma, the increase in T helper
2 (Th2) lymphocytes in the peripheral blood of
asthmatic patients during an exacerbation is related
to the severity of airway eosinophilia, contributing
to the pathophysiological changes that require
aggressive treatment6. Upon contact with allergens
presented by antigen-presenting cells (APCs)
in the airway, Th2 cells secrete Th2 cytokines
such as interleukin (IL)-4, IL-5, and IL-13, which
recruit inflammatory cells (including eosinophils,
basophils, and mast cells) and activate B cells to
release immunoglobulin E (IgE) (Figure 2)7.
IL-13 targets goblet cells, leading to excessive mu-
cus production and goblet cell hyperplasia; it also
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induces eosinophil infiltration by priming the vessel
wall, resulting in AHR8. IL-5 participates in the de-
velopment, activation, and migration of eosinophils
from the bone marrow to the airways, initiating air-
way inflammation9. IL-4 initiates IgE isotype class
switching in B cells and upregulates the IgE receptor
(FcεRI) on the mast cell surface, resulting in the re-
lease of histamine and other mediators3. Another
hallmark of asthma is the elevated level of serum
IgE synthesized by plasma cells activated by IL-4-
induced class switching of B cells10.

MOUSE STRAIN IN THE
ALLERGIC ASTHMA MOUSE
MODEL
Mouse strains exhibit diverse capabilities in mani-
festing specific diseases and play a major role in en-
suring the successful development of intended phe-
notypes. The most widely preferred strains include
BALB/c, C57BL/6, and A/J mice11.
The BALB/c strain has become particularly promi-
nent in asthma studies involving allergen challenge
due to its proficiency in activating a robust type 2
immune response12. This includes the production of
Th2 cytokines, allergen-specific IgE, eosinophilic re-
sponses, and AHR. Upon allergen exposure, BALB/c
mice readily produce these Th2 cytokines and de-
velop AHR and airway inflammation, characterized
by eosinophilic infiltration—all of which are crucial
to the pathogenesis of allergic asthma13,14. Further-
more, their strong tendency to produce IgE antibod-
ies in response to allergens facilitates the sensiti-
zation phase of allergic asthma. Upon allergen re-
exposure, the crosslinking of IgE to mast cells subse-
quently triggers degranulation and the release of in-
flammatory mediators15,16. Moreover, BALB/c mice
exhibit airway remodeling, demonstrating their ca-
pability to express the pathophysiology of the in-
flammatory process in asthma17.
In contrast, the C57BL/6 strain is regarded as a pro-
totypic non-type 2 mouse strain, eliciting Th1 cy-
tokines (interferon-gamma (IFN-γ) and tumor necro-
sis factor alpha (TNF-α)) in response to allergen
challenge18. Despite limitations in allergic air-
way development—particularly in IgE expression
and AHR to methacholine—this strain is widely em-
ployed as a genetically modified animal model for
assessing the impact of genetic manipulation on dis-
ease progression, including evaluation of allergen
sensitization responsiveness and allergic airway in-
flammation19. Researchers also utilize other strains,

such asA/J, in mousemodels of asthma, demonstrat-
ing effectiveness in inducing AHR and increasing cy-
tokine production20.
Nevertheless, mouse models of asthma do not per-
fectly recapitulate the complexity of human asthma,
largely due to the heterogeneous nature of the dis-
ease with various phenotypes. Modeling the full
spectrum of human asthma in a single mouse is
challenging, often necessitating a focus on specific
mechanisms, such as Th2-mediated inflammation
and AHR21. Significant differences exist between
mouse and human airway anatomy and physiology,
including variations in size, structure, and branching
patterns that affect allergen delivery and the devel-
opment of airway inflammation and remodeling22.
While the mouse and human immune systems share
similarities, genetic variations lead to significant dif-
ferences, particularly in cytokine profiles, receptor
expression, and gene regulation, which influence
asthma development and progression23. Further-
more, artificial allergen sensitization protocols com-
monly used in mouse models—often involving re-
peated exposure to high doses of purified allergens—
differ from natural human allergen exposure, which
is typically more chronic and involves a complex
mixture of allergens24.

ALLERGENS USED TO INDUCE
ASTHMA
An allergen is any substance recognized as foreign
by the immune system, provoking an allergic re-
sponse. Different types of allergens can induce asth-
matic conditions in animal models, with ovalbu-
min (OVA) being a commonly employed allergen.
Whether in acute or chronic models, OVA offers ad-
vantages such as affordability, availability, a highly
purified antigen, well-defined major histocompati-
bility complex (MHC) epitopes, and the existence of
a recombinant peptide, making it a popular choice25.
The allergic reaction induced by OVA produces a
rapid, strong, and standardized response. The OVA-
sensitized and challenged mouse models have suc-
cessfully elucidated the effects of inflammatory cell
infiltration, Th2 cytokine secretion, eosinophil re-
cruitment, AHR, and airway remodeling26. Addi-
tionally, some studies have reported goblet cell hy-
perplasia, increased mucus production, collagen de-
position, and fibrosis27.
While the OVAmodel has greatly contributed to un-
derstanding the mechanisms of allergic asthma, con-
cerns persist regarding its clinical relevance. Chal-
lenges in using OVA-induced asthmamodels include
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the development of OVA tolerance during long-term
interventions in chronic models, the discrepancy be-
tween the human (airway) and mouse (intraperi-
toneal) sensitization routes—which may bypass the
innate airway immune environment—and the rarity
of encountering OVA in human asthma28. Conse-
quently, other models using allergens more closely
related to human asthma, such as house dust mite
(HDM), have been developed.
Dermatophagoides farinae (American HDM) and
Dermatophagoides pteronyssinus (European HDM)
are common aeroallergens known to cause allergic
sensitization29. HDM inhalation triggers pattern
recognition receptors (PRRs) on airway epithelial
cells, leading to chemokine and cytokine secretion
that cause damage to the airway epithelia30. The al-
lergenicity of HDM depends on its allergenic protein
load, reflected by the IgE-binding complex pattern
measured by the antibody titer.
HDM sensitization and challenge in mouse models
have successfully reproduced asthmatic features31.
Immunotherapy with purified natural D. pteronyssi-
nus reduced AHR, eosinophilia, and Th2 cytokines
in mice, indicating potential clinical effects32. Der
p 2.1 peptide treatment has demonstrated the ability
to suppress Th2 andTh17 cell polarization via IL-10-
secreting dendritic cells33. Derp2-FlaB fusion pro-
tein, used as a treatment in HDM-sensitized mice,
inhibited AHR, eosinophil infiltration, and Derp2-
specific IgE, suggesting promise as a vaccine in
asthma therapy34.
Additionally, other allergens have also been used
for sensitization and challenge in asthmatic mouse
models. Acute allergic inflammation induced by pa-
pain was observed to stimulate eosinophilia9. In-
tratracheal challenge with Schizophyllum commune
fungus in an OVA-induced model increased air-
way neutrophilia and the secretion of IL-17A and
IL-17F35. Coal fly dust used to sensitize BALB/c
mice enhanced neutrophil and other inflammatory
cell infiltration, as well as increased cytokine se-
cretion36. Sensitization and challenge in mice us-
ing shrimp tropomyosin resulted in eosinophilia, in-
creased IgE secretion, lung inflammation, mucus hy-
persecretion, goblet cell hyperplasia, collagen de-
position, and dense smooth muscle, indicating that
shrimp tropomyosin can be employed as an allergen
to study asthma pathogenesis37.

ALLERGEN SENSITIZATION IN
MOUSE MODELS
Sensitization procedures are essential for induc-
ing asthmatic conditions in animal models. Since

asthma does not naturally develop in mice, sensi-
tization is necessary to introduce the allergen and
requires multiple re-exposures to evoke the aller-
gic reaction. The initial exposure to the allergen
stimulates T lymphocytes to secrete Th2 cytokines,
while B lymphocytes undergo isotype switching,
generating allergen-specific IgE38. Subsequent re-
exposures lead to the cross-linking of basophils and
IgE-bound mast cells, triggering degranulation and
the release of inflammatory mediators.
Allergens are commonly used to induce allergic re-
sponses in animal models, together with adjuvants
to enhance the immunogenicity of the allergen and
further support the development of asthmatic ani-
mal models39. OVA, HDM, and Aspergillus are clin-
ically relevant allergens in humans and are com-
monly used in allergic asthma mouse models. OVA,
a protein allergen mainly found in chicken’s egg
white, is widely used in the majority of studies on
allergic asthma40. Various routes of sensitization,
including intraperitoneal (i.p.), subcutaneous (s.c.),
intranasal (i.n.) injection, and epicutaneous (ec), can
be used to induce asthmatic conditions.
In the development of animal allergic asthma mod-
els, an adjuvant is administered to enhance the sensi-
tizationmechanism of allergens during the sensitiza-
tion phase. Aluminum hydroxide (alum), frequently
used as an adjuvant, induces a strong type 2 im-
mune reaction41. The aggregate structure of alum
continuously releases antigen, promoting phagocy-
tosis and inducing local inflammation, resulting in
macrophage activation, MHC class II expression,
and antigen presentation42. The recruitment of
macrophages and dendritic cells was observed in the
alum-adjuvant group, with increased eosinophilic
infiltration, Th2 cytokines, and IgE levels43.
In contrast, Complete Freund’s Adjuvant (CFA) in-
duces Th17 and Th1 cell activation, resulting in
neutrophilic infiltration of the lungs44. A few
studies have reported significant neutrophil in-
filtration and low eosinophil numbers, indicat-
ing that CFA is effective in inducing neutrophilic
asthma45. The lungs were also dominated by den-
dritic cells, macrophages, and activated B cells, with
increases in the Th1 cytokine IFNγ and the Th17
cytokine IL-17A43. Interestingly, different aller-
gens administered with the same adjuvant produced
different effects, where subcutaneous injection
of OVA/CFA showed neutrophilic inflammation46,
whereas HDM/CFA exhibited mixed eosinophilic-
neutrophilic inflammation47. This difference is pos-
sibly due to the distinct nature of the antigens and
how they interact with the immune system. When
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combined with strong adjuvants like CFA, OVA, a
relatively simple protein, may preferentially stim-
ulate a robust Th1 immune response48, whereas
HDM, a complex mixture of proteins, can activate
a broader immune response, engaging both Th2 and
Th17 cells49.
Meanwhile, lipopolysaccharide (LPS) is widely used
to induce mixed eosinophilic and neutrophilic in-
flammation in asthmatic mouse models50. LPS ac-
tivates toll-like receptor 4 (TLR4) on lung epithe-
lial cells, transducing a pro-inflammatory signaling
pathway51. The concentration of inhaled LPS dur-
ing sensitization determines the type of inflamma-
tion, where low levels of LPS lead to Th2 responses,
while high levels induce Th1 responses52.
Nevertheless, the use of adjuvants can alter exper-
imental animal behavior by causing distress and
interfering with the study of adjuvant-containing
drugs, such as allergen-specific immunotherapy for
allergy vaccine development53. Hence, adjuvant-
free sensitization offers a more realistic model, mir-
roring chronic asthma manifestation in humans54.
Adjuvant-free sensitization via subcutaneous injec-
tion can induce AHR, airway remodeling, increased
IgE secretion, and eosinophil and lymphocyte infil-
tration55. Likewise, the intranasal route can induce
allergic inflammation associated with Th2 cytokine
secretion, increased inflammatory cell infiltration,
and mucus hypersecretion53.
Therefore, the route of sensitization, as well as the
types of adjuvants and allergens used, play pivotal
roles in inducing different phenotypes of asthma in-
flammation. The presence of various adjuvants in al-
lergen sensitization leads to different inflammatory
responses in the asthmatic airway (Table 1).

ALLERGEN CHALLENGE IN
MOUSE MODELS
The capability of mouse models to induce the asth-
matic condition is well-established, and these mod-
els are useful for controlling inflammation. The
acute allergic airway inflammatory model is pre-
dominantly studied due to its ability to successfully
establish many asthmatic features. However, this
acute model falls short in developing other major
features observed in human asthma, such as collagen
deposition and chronic airway remodeling. Conse-
quently, the field has shifted toward developing and
studying chronic allergic airway inflammation mod-
els to address the limitations of the acute model.

Acute allergen challenge model
Because mice do not naturally develop asthma, hu-
man intervention is necessary to induce artificial
asthmatic conditions in the airways. Asthma is char-
acterized by multiple phenotypes and cannot be en-
tirely replicated by a single model. Hence, specific
phenotypes are developed depending on the objec-
tives of the study. Table 2 provides a summary
of different sensitization and challenge protocols in
acute asthmatic mouse models.
The development of an asthmatic model in mice
depends on several factors, including the protocol
of sensitization and challenges, the adjuvants, and
the type of allergens. In the acute mouse asthma
model, diverse yet coherent protocols were em-
ployed. Allergen sensitization via systemic delivery
into the circulatory system commonly necessitates
multiple re-exposures to establish a favorable aller-
gic model38. Meanwhile, allergen challenge is usu-
ally administered via the airways through inhala-
tion (aerosol), intratracheal (i.t.), or intranasal (i.n.)
routes. The common acute model protocol involves
allergen sensitization lasting for two to three weeks,
followed by allergen challenge for several consecu-
tive days, with the endpoint assessed 24 hours after
the last challenge.
The acute mouse model develops the common char-
acteristics of clinical asthma. Studies have shown
that lung pathology induced by allergens can ex-
hibit changes in the lungs that cause airway inflam-
mation, airway remodeling, and AHR66? . Histo-
logical analysis allows examination of inflammatory
cell recruitment, mucus production, collagen depo-
sition, and fibrosis in the perivascular and peribron-
chiolar space67. The acute model is also utilized to
study the mechanisms of remodeling and oxidative
stress associated with the signaling pathway in pul-
monary asthma68,69. Additionally, this model has
also shown the amelioration of allergic inflamma-
tion when treated with various potential suppres-
sors, such as IL-3870, anti-IL-2571, and leukotriene
B4 receptor blocker72.
While the acute model has successfully investigated
some features of the pathophysiology of asthma, it
has limitations compared to clinical asthma, which
requires persistent airway inflammation to mimic
asthmatic individuals. The short period of allergen
challenge is one reason for minimal changes in air-
way remodeling, AHR, and eosinophilia, with these
changes subsiding a few weeks after the last chal-
lenge. Asthma is associated with chronic disease, so
some concerns arise regarding the reliability of acute
mouse models in investigating disease progression
and potential treatments.
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Table 1: The route of allergen and adjuvant sensitization and its effect in asthma development

Allergen Adjuvant Strain Route Efficacy Reference

OVA Alum BALB/c i.p. ↑ eosinophils and B cells population
↓ GATA3 and ILC2s in LN
↓ IFN-γ and Th1 cells in lung
↑ IL-5 and IL-4 and Th2 cells in lung and LN

52

LPS BALB/c i.p. ↓ eosinophils percentage
↑ neutrophils population in BALF
↑ T-bet and ILC1s in lungs
↑ RORγt and ILC3s in LN
↑ Th17 cells in lungs and LN

OVA CFA C57BL/6 i.p. ↑ neutrophils and macrophages in BALF
↑ inflammatory cells infiltration and goblet cells based
on H&E and PAS staining
↑ S100A9, caspase-1, IL-1β , IL-17, IFN-γ , TNF-α and
myeloperoxidase proteins in western blot analysis

45

OVA CFA C57BL/6 i.p. ↑ plasmacytoid dendritic cells, exudate macrophages,
and B cells
↑ neutrophils in BALF and lung
↑Th1 cytokine IFN-γ

43

Alum C57BL/6 i.p. ↑ interstitial macrophages and myeloid dendritic cells
↑ eosinophils in BALF and lungs
↑ IL-5 and IL-13
↑ basophils and mast cells in lung tissue

OVA Alum BALB/c i.p. ↑ eosinophils number
↑ IL-4, IL-5, IL-13 and IL-33 in BALF
Moderate inflammation (only bronchi and vessels of
the lungs infiltrated with inflammatory cells)

58

LPS BALB/c i.p. ↑ neutrophils number
↑Th1 (IFN-γ) and Th17 (IL-17A) in BALF
Severe inflammation (nearly whole lung infiltrated
with inflammatory cells)

HDM Alum BALB/c s.c. ↑ IgE level
↑Th2 cytokines

56

HDM CFA C57BL/6 s.c. ↑ macrophage MIF in BALF
↑ mixed eosinophilic/neutrophilic response
AHR

47

OVA CFA BALB/c s.c. ↑ neutrophils count
↑ inflammatory cell infiltration
AHR

46

OVA LPS BALB/c i.n. ↑Th2 (IL-4, IL-5, IL-13) and Th17 (IL-17)
↓Th1 (IFN-γ) and Treg (TGF-β , IL-10)
↑ GATA3, T-bet, and ROR-γt expression
↓ T-bet, Foxp3 and IL-10 expression
AHR

57

Abbreviations: i.p.: intraperitoneal; s.c.: subcutaneous; i.n.: intranasal; ILCs: innate lymphoid cells; LN: lymph node; IFN-γ : interferon-
gamma; Th: T helper cells; IL: interleukin; BALF: Bronchoalveolar lavage fluid; T-bet: T-box transcription factor TBX21; RORγt: retinoic
acid receptor-related orphan receptor gamma t; H&E: hematoxylin and eosin; PAS: periodic acid-schiff; S100A9: S100 calcium-binding
protein A9; TNF-α : tumor necrosis factor alpha; IgE: immunoglobulin E; MIF: migration inhibitory factor; AHR: airway hyperrespon-
siveness; Treg: regulatory T cells; TGF-β : transforming growth factor-beta; Foxp3: forkhead box protein 3.
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Table 2: Acute allergic airway inflammation in acute asthmatic mouse models

Strain/genderAllergen Sensitization/routeChallenge/routeResponses to challenge References

BALB/c
Female

OVA Day 0 and 7
OVA + alum
i.p.

Day 14-18
OVA
i.n.

AHR and airway inflammation 59

BALB/c
Female

HDM Day 0 and 7
HDM + alum
i.p.

Day 14-25
HDM
i.n.

AHR, inflammatory cells infiltration,
eosinophilia, Th2 cytokines and IL-33 se-
cretion

60

BALB/c
Male

OVA Day 0 and 14
OVA + alum
i.p.

Day 21-23
OVA
Aerosol

Neutrophils and eosinophil infiltration airway
wall thickening

52

C57BL/6

Female

OVA Day 0 and 5
OVA + alum
i.p.

Day 12 and
13
OVA
Aerosol

Neutrophilia and airway inflammation 35

BALB/c
Female

OVA Day 0 and 14
OVA + alum
i.p.

Day 28-30
OVA
Aerosol

Inflammatory cells infiltration, Th2 cytokines
secretion, eosinophilia

61

BABL/c
Male

OVA Day 7 and 14
OVA + alum
i.p.

Day 21-23
OVA
Aerosol

Leukocytes infiltration, eosinophilia and TNF-
α , IL-1β , IL-6, TGF-β , and IFN-γ secretion

62

Balb/c
Male

OVA Day 0, 2, 4, 7, 9
and 10
OVA
i.p.

Day 15, 18
and 21
OVA
i.t.

Inflammatory cells infiltration, muscle and ep-
ithelial thickening, epithelial desquamation,
goblet cell metaplasia, and collagen deposition

17

BALB/c
Female

OVA Day 1 and 14:
OVA + alum
i.p.

Day 25-28
OVA
i.n.

Inflammatory cells inflammation and
IL-5 and IL-13 secretion

63

C57BL/6

Female

OVA Day 1 and 15
OVA + alum
i.p.

Day 21-23
OVA
Aerosol

Aberrant miRNAs profile in the CD4+ T lym-
phocytes

64

BALB/c
Female

OVA Day 1, 8 and 15

OVA + alum
i.p.

Day 16-22
OVA
Aerosol

Airway inflammation and remodeling, inflam-
matory cells infiltration and Th2 cytokines se-
cretion

65

Abbreviations: i.p.: intraperitoneal; i.n.: intranasal; i.t.: intratracheal; OVA: ovalbumin; HDM: house dust mite; alum: aluminium hy-
droxide;AHR: airway hyperresponsiveness;Th: T helper cells; IL: interleukin; TNF-α : tumor necrosis factor alpha; TGF-β : transforming
growth factor-beta; IFN-γ : interferon-gamma; miRNAs: micro ribonucleic acids

Chronic allergen challenge model

A chronic mouse model with prolonged allergen
challenges overcomes several issues encountered in
the acute mouse model. Significant differences in
AHR, airway remodeling, and inflammatory profiles
between acute and chronic asthmatic models have
been observed in clinical asthma. The chronicity of
allergen exposure is a critical concern in the acute
model, as the sensitization and challenge procedures
may not induce persistent changes in airway inflam-
mation, unlike in humans. Various chronic sensiti-

zation and challenge protocols have been employed,
with some summarized in Table 3.
Chronic allergen challenge contributes to persis-
tent airway remodeling, depicted by collagen depo-
sition, airway inflammation, goblet cell hyperpla-
sia, and eosinophilia in the mouse model73,74. The
chronic model typically spans 4 to 12 weeks, start-
ing with allergen sensitization followed by repeated
low-level allergen exposure. Different types of aller-
gens have been used to simulate the chronic model,
and adjuvant-free protocols have been employed to
imitate the natural sensitization that occurs in hu-
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mans75.
The presence of T cells is essential for an immediate
response to recurrent allergen exposure76. Chronic
allergen exposure has demonstrated a CD4+ and
CD8+ T cell-dependent effect on airway inflam-
matory cell infiltration and AHR75,77. Moreover,
eosinophils play an important role in the remod-
eling process by altering the structure of airway
nerves, inducing AHR and fibrosis, and thereby in-
creasing allergen sensitivity in eosinophilic asthma
associated with chronic allergen exposure78. Exten-
sive research using chronic murine asthma models
has explored the roles of some proteins, such as the
WNT5A ligand79, microRNA-22180, and IL-3373, to
understand their effects on asthma pathogenesis.
The chronic mouse model has successfully repli-
cated key features of human asthma and is cur-
rently employed to study potential therapeutic treat-
ments applicable at the clinical stage. Extracellu-
lar vesicles derived from human umbilical cord mes-
enchymal stem cells have shown therapeutic po-
tential in the chronic asthma model, particularly
in a hypoxic environment81. This study demon-
strated significant attenuation of airway inflamma-
tion, represented by the depletion of inflammatory
cells, eosinophils, and Th2 cytokines, and amelio-
ration of airway remodeling, accompanied by de-
creases in alpha-smooth muscle actin (α-SMA), col-
lagen type 1, and transforming growth factor-beta
(TGF-β ) 1 signaling pathway expression.
Additionally, this model is also used to gain a bet-
ter understanding of biochemical changes within
complex tissue samples of potential anti-asthmatic
compounds82. Novel imaging techniques that com-
bine the analytical approaches of focal plane array
(FPA) and synchrotron Fourier-transform infrared
(S-FTIR) enable the investigation of broader molec-
ular changes surrounding the airways and identifi-
cation of types of collagen deposition present in the
chronic asthma model, further supporting the anal-
ysis of conventional methods.
However, several hindrances related to the chronic
mouse model were identified when compared to hu-
man asthma. In humans, asthma often develops
spontaneously in early life alongside immature lung
development, compared to the fully developed lungs
of mice at birth, necessitating artificial allergen and
adjuvant sensitization83. The route, amount, and
frequency of allergen exposure in controlled condi-
tions of allergic airwaymousemodels differ from the
natural and acquired immune responses of asthma
exacerbation in humans and do not reflect patient
heterogeneity84,85.

Moreover, the extended period of inhaled antigen
exposure in mice induces tolerance, described by
changes in inflammatory cell profiles, airway inflam-
mation, and AHR, limiting the opportunities to in-
vestigate the chronicmodel and the underlying path-
ways86,87. Nevertheless, allergen tolerance provides
some advantages for studying the effect of certain
parameters associated with asthma for therapeutic
development. Inhaled allergens may induce an inap-
propriate Th2-cell inflammatory response, and this
adverse reaction can be obscured via the local in-
halation tolerance process to restore airway home-
ostasis88 and regulation of free IgE89, thereby di-
minishing asthma symptoms.
While invaluable for research, these chronic mouse
models pose significant ethical challenges. Pro-
longed suffering, due to repeated allergen exposure
leading to chronic inflammation, AHR, and airway
remodeling, can cause discomfort, breathing difficul-
ties, and potentially pain over extended periods90.
Assessing pain and distress can be challenging, as
subtle behavioral changes may indicate underlying
suffering but are difficult to interpret definitively91.
Therefore, researchers must carefully optimize re-
search protocols by minimizing the duration and in-
tensity of allergen exposure, balancing the need to
reduce distresswith the requirement to obtainmean-
ingful data. Animals should also be monitored reg-
ularly for signs of distress, including routine assess-
ment of respiratory function and behavior.

FUTURE PERSPECTIVES AND
CONCLUSION
Allergen sensitization and challenge in mouse mod-
els represent classical protocols for manifesting
asthma pathophysiology. Researchers are striving
to model specific disease phenotypes that accurately
replicate the complex nature of human asthma.
While acute allergen challenges effectively represent
several hallmarks of asthma, they fall short of cap-
turing certain features of chronic asthma. Therefore,
the development of chronic allergen challenge mod-
els aims to deepen understanding of disease mecha-
nisms and discover novel therapeutic potentials.
Allergic mouse models require active sensitization,
typically introducedwith adjuvants administered in-
traperitoneally or subcutaneously alongside the al-
lergen. These methods are less intrusive and do not
require sedation, but they may induce tolerance. As
a result, models without adjuvants have been de-
veloped to induce sensitization in the airways via
intranasal instillation, simulating the natural expo-
sure of humans to airborne allergens. Thismodel has
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Table 3: Chronic allergic airway inflammation in chronic asthmatic mouse models

Strain/genderAllergen Sensitization/routeChallenge/route Response to challenge References

BALB/c
Female

OVA Day 0, 7, and 14

OVA + alum
i.p.

Day 21-55
OVA
Aerosol/i.n.

Airway remodeling, inflammatory cells
infiltration, eosinophilia, increased mu-
cus production and IL-4 and IL-13 secre-
tion

82

BALB/c
Female

OVA Day 0, 7, 14, and
21
OVA + alum
s.c.

Days 33 and 35:
OVA
i.n.

AHR, airway inflammation, and remod-
eling, Th2 cytokines, TSLP, IL-33 and
IL-25 secretion, goblet cell hyperplasia,
increased TNF-α , and collagen deposi-
tion

92

BALB/c
Female

OVA Day 0, 14, 28
and 42
OVA + alum
i.p.

Day 21-42
OVA
Aerosol

Airway remodeling, inflammatory cells
infiltration, elevated IgE, IL-6 and IL-13

93

Balb/c
Female

HDM Days 0, 7, and
14
HDM
i.p.

Day 21–28
HDM
i.n.

Inflammatory cells infiltration, Th2 cy-
tokines secretion and specific IgE pro-
duction, airway wall thickening, mu-
cosal metaplasia, collagen deposition,
goblet cell hyperplasia and mucus hy-
persecretion.

30

BALB/c
Female

OVA Day 1 and 14
OVA + alum
i.p.

Day 14, 17, 21,
24, 27, 60, 69, 71,
73, 74, and 75
OVA
i.n.

Inflammatory cells infiltration, Th2 cy-
tokine, IL-17, TNF-α and high mobility
group box protein 1 secretion.

94

BALB/c
Female

OVA Day 1, 2 and 3
OVA + alum
i.p.

Day 14, 17, 21,
24, 27, 60, 69, 71,
73, 74, and 75
OVA
i.n.

Airway remodeling, inflammatory cells
infiltration and Th2, Th1, IL-17 and IL-
22 cytokines secretion and collagen de-
position

95

BALB/c
Female

OVA Day 1 and 14
OVA + alum
i.p.

Day 28, 30, 32,
34, 36, 38, 40, 42
and 44
OVA
Aerosol

Airway inflammation, fibrotic airway
remodeling and inflammatory cells in-
filtration

63

C57BL/6
Female

HDM Day 1
HDM
i.n.

Day 2-36:
HDM
i.n.

Th2-mediated eosinophilic inflamma-
tion and IL-12 and IL-6 production

96

Balb/c
Male

OVA Day 0 and 14
OVA+ alum
i.p.

Three times per
week for 9weeks

OVA
Aerosol

Day 87:
AHR, inflammatory cells infiltration,
eosinophilia, andmucus hypersecretion

97

C57BL/6
Female

HDM Day 0 and 7:
HDM
i.n.

five times per
week for three
weeks, rested
(4–8 week) and
rechallenged
HDM
i.n.

24 hours after the final challenge:
AHR, increased CD4+ T cells and den-
dritic cells

98

Abbreviations: i.p.: intraperitoneal; i.n.: intranasal; s.c.: subcutaneous; OVA: ovalbumin; alum: aluminum hydroxide; IL: interleukin;
Th: T helper cells; TLSP: thymic stromal lymphopoietin; TNF-α : tumor necrosis factor alpha; IgE: immunoglobulin E; HDM: house dust
mite; AHR: airway hyperresponsiveness.
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proven effective in producing a phenotype of asthma
comparable to that of the traditional adjuvant model.
In allergen challenge, aerosol and intranasal routes
are likely closer to mimicking human exposure than
the intratracheal approach. The allergen OVA may
inadvertently induce tolerance with repeated and
prolonged exposure, in contrast to HDM, which
exhibits persistent airway inflammation, making it
more suitable for modeling chronic asthma. There-
fore, adjuvant-free models and aeroallergen expo-
sure may be more relevant in mimicking human
asthma for the development of new treatments and
preventive approaches. Despite the shortcomings
of both acute and chronic allergic asthma models,
ongoing research aims to improve protocols to en-
hance our understanding of asthma at the cellular
and molecular levels.

ABBREVIATIONS
α-SMA (Alpha-smooth muscle actin), AHR (Air-
way hyperresponsiveness), Alum (Aluminum hy-
droxide),APC(s) (Antigen-presenting cell(s)), BALF
(Bronchoalveolar lavage fluid), CFA (Complete Fre-
und’s Adjuvant), ec (Epicutaneous), Foxp3 (Fork-
head box protein 3), FPA (Focal plane array,
an imaging technique), H&E (Hematoxylin and
eosin staining), HDM (House dust mite), IFN-γ
(Interferon-gamma), IgE (Immunoglobulin E), IL
(IL-4, IL-5, IL-13, IL-17, etc.) (Interleukin), ILC(s)
(ILC1, ILC2, ILC3) (Innate lymphoid cell(s)), i.n.
(Intranasal), i.p. (Intraperitoneal), i.t. (Intratra-
cheal), LN (Lymph node), LPS (Lipopolysaccharide),
MHC (Major histocompatibility complex),miRNAs
(Micro ribonucleic acids), OVA (Ovalbumin), PAS
(Periodic acid–Schiff staining), RORγt (Retinoic
acid receptor-related orphan receptor gamma t),
s.c. (Subcutaneous), S-FTIR (Synchrotron Fourier-
transform infrared spectroscopy), S100A9 (S100
calcium-binding protein A9),T-bet (T-box transcrip-
tion factor TBX21), TGF-β (Transforming growth
factor-beta), Th (Th1, Th2, Th17) (T helper cells),
TLR4 (Toll-like receptor 4), TNF-α (Tumor necro-
sis factor alpha), and TSLP (Thymic stromal lym-
phopoietin)
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