Supplementary Material

Noordin, S., Al-Amoudi, B., Mohamed, R., Aziz, M., Noor, S., & Zabidi, M. (2025). Unraveling Common Stem Cell Sources and Key Reporting Parameters in Studies Related to Stem Cell-Derived Red Blood Cells: A Review. *Biomedical Research and Therapy*, 12(5), 7372-7385. <u>https://doi.org/10.15419/bmrat.v12i5.976</u>

Stu dy ID	Author (Year)	DOI	Stem Cell Types	Cell Source	Culture Duratio n (Days)	Culture Media & Supplements	Oxygen Tension (if stated)	Differentiation Protocols	RBCs Yield	Enucleat ion Rate (%)	Hemoglo bin Type	Key Outcomes	Notes
SI	Chang et al. (2006)	https://doi.org/10.1182/blood-2005-11-011874	hESCs (H1 line)	Embryon ic (Embryo id bodies or EBs from hESCs)	15 to 56 days	Fetal bovine serum (FBS), vascular endothelial growth factor VEGF, Flt3-L 10ng/mL, or coculture with OP-9 during erythroid differentiation, growth expansion medium (GEM), IL-6 10ng/mL, IL-3 10ng/mL, G- CSF, TPO 96U/mL, SCF 200ng/mL, EPO 3U/mL	NA	The differentiation protocol adopted from Carotta et al (2004) involves processing cells present at early and late stages of embryoid body differentiation, with a focus on the emergence of hematopoietic markers like CD45, CD34, and CD41, EPO 3U/mL stem cell factor SCF 200ng/mL Carotta S, Pilat S, Mairhofer A, et al. Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood. 2004; 104:1873-1880.	NA	NA	The erythroid cells coexpress high levels of embryoni c globins (r and) and fetal globin, with little or no adult globin (%)	The study concludes that the high frequency of erythroid cells coexpressing embryonic and fetal globins can serve as a valuable tool for exploring molecular mechanisms of hematopoiesis. The cells resemble definitive-type erythroid cells morphologically but do not mimic either yolk sac embryonic or fetal liver counterparts	The study highlights the challenges in studying primitive erythropoie sis due to ethical concerns and the transient nature of these cells. It emphasizes the need for further exploration of the molecular mechanisms involved in hematopoiet ic differentiati on from human embryonic stem cells
S2	Lu et al.	https://doi.org/10.1182/blood-2008-05-157198	hESCs	Embryon	19 -21	The media used	NA	Formation of	The study	60%	The	The study	The
L	(2008)			IC	I	includes BGM		embryoid	reports a		uerivea	uemonstrates	presence of

Supplementary 1: Scoping review data extraction form

				The hESCs used in the study include MA01, H1, HuES-3, and MA99 lines, with MA01 yielding the highest efficienc y		(Basal Growth Medium) and Stemline II, supplemented with various factors such as: Stem Cell Factor (SCF): 100 ng/mL Interleukin-3 (IL- 3): 5 ng/mL Erythropoietin (Epo): 3 IU/mL,Methylcell ulose (0.2% to 0.5% to prevent aggregation) Other supplements like inositol, folic acid, monothioglycerol, transferrin, insulin, ferrous nitrate, ferrous sulfate, BSA, L- glutamine, and penicillin- streptomycin		bodies (EBs) from hESCs. Expansion of blast colonies (BCs). Erythroid differentiation and amplification into RBCs. Enrichment of RBCs	yield of approxima tely 3.86 x 10^10 RBCs from one 6-well plate of MA01 hESCs, which is about 1.2 x 10^7 cells		cells primarily expressed fetal and embryoni c globins, with the capacity to express adult β- globin upon further maturatio n	the feasibility of differentiating hESCs into functional RBCs on a large scale. The oxygen equilibrium curves of the hESC-derived cells were comparable to normal RBCs, indicating functional maturity	methylcellu lose in the culture media was noted to enhance cell expansion by preventing aggregation
\$3	Hiroya ma et al. (2008)	https://doi.org/10.1371/journal.pone.0001544	Mouse Embryonic Stem Cells (ESCs)	Murie (ESC lines: E14TG2 a, BRC4, BRC5)	~120 days total: Phase I: 0–10 days, Phase II: up to day 60, Phase III–IV: up to day 1201	MDM + 15% FBS, ITS (insulin 10 mg/ml, transferrin 5.5 mg/ml, selenium 5 ng/ml, 50 μg/ml ascorbic acid, 0.45 mM monothioglycerol, antibiotics; cytokines: SCF (50 ng/ml), EPO (5 U/ml), IL-3 (10 ng/ml), VEGF (20 ng/ml), IGF-II (200 ng/ml), dexamethasone (10 ⁻⁶ M)		4-phase method using OP9 feeder cells, cytokine cocktails; Method A (with IL-3), Method B (without IL- 3)	Visible red cell pellet formation; improved RBC count in vivo	Enucleate d RBCs observed by SYTO85 and morpholo gy (no exact % stated)	Adult type (α - and β - globin expressed; γ , ε , ζ not expressed)	MEDEP cell lines proliferate >1 year, differentiate in vitro/in vivo into functional RBCs, and ameliorate acute anemia in mice	Cytokine dependence varied by line; IL-3 not essential for erythroid lines; RBCs produced were functional and non- tumorigenic
S4	Ma et al. (2008)	https://doi.org/10.1073/pnas.0802220105	hESCs	Embryon ic H1 line hESCs	Up to 18 + 6	$\label{eq:a-MEM+15\%} \begin{array}{l} α-MEM+15\%$\\ FBS, glutamine, $NEAA, β-$ mercaptoethanol $SCF 100, IL-3 10, $IL-6 100, TPO 10, $EPO 4 U/ml$ \end{array}$	5% CO ₂ , no hypoxia	Coculture with mFLSCs, colony + suspension cultures	Up to 1×10 ⁶ from 1×10 ⁴	Up to 82%	$Embryoni c \rightarrow Fetal \rightarrow Adult$	Progressive maturation and Hb switching	

S5	Honig et al. (2010)	https://doi.org/10.3109/03630261003676850	hESCs	Embryon ic MA-01, H-1, H-7	~21	Unspecified medium; co- culture with OP9	NA	Direct differentiation to primitive erythrocytes	Not quantified	No data	Embryoni c Hb (ζ2ε2, γ4) dominant Embryoni c & fetal	Embryonic-type RBCs; resembles early yolk sac stage	
S6	Dias et al. (2011)	https://doi.org/10.1089/scd.2011.0078	hESC	Transgen ic & transgen e-free fibroblas t iPSC	Up to 75	OP9 co-culture + SFEM + cytokines SCF 50-100 ng/ml, EPO 2-6 U/ml, IL-3 5 ng/ml, TPO 50 ng/ml, Dex 10 ⁻⁶ M	NA	2 methods: CD34+ expansion or reaggregation on MS5	High (up to 4,000x per hESC)	12%	Hb dominant; low β- globin	Long-term expansion, robust erythropoiesis, scalable	Same paper as in S13
S7	Malik et al. (1998)	https://doi.org/10.1182/blood.V91.8.2664.266 4_2664_2671	CD34 ⁺ HSPCs	Bone marrow, cord blood	Up to 21	IMDM + BSA + EPO + IL-3 + GM-CSF EPO 10 U/ml, IL- 3 0.01 U/ml, GM- CSF 0.001 ng/ml	Reduced O ₂ (hypoxi c)	Single-step liquid culture	Sufficient for phys. studies; 42% enucleatio n	42%	Adult Hb (β-globin predomin ant)	Functional RBCs with physiological Hb pattern	
S8	Neildez - Nguyen et al. (2002)	https://doi.org/10.1038/nbt0502-467	CD34+ progenitors	Cord blood	18-21	IMDM + FBS, insulin, SCF, IL- 3, IL-6, EPO transferrin, heparin	Normox ic	3-step: expansion + erythroid + terminal	~1.5×10 ⁸ per flask	60-80%	HbF Mostly fetal, some adult	RBCs matured in vivo in NOD/SCID mice	
S9	Giarrata na et al. (2005)	https://doi.org/10.1182/blood-2011-06-362038	CD34+ HSCs	Periphe ral blood (G-CSF mobilize d)	18	IMDM + transferrin, insulin, heparin, 5% inactivated plasma SCF 100 ng/ml, IL-3 5 ng/ml, EPO 3 IU/ml, hydrocortisone 10 ⁻⁶ M	5% CO ₂ in air	3-step: SCF+IL- $3+EPO \rightarrow$ SCF+EPO \rightarrow EPO only	61,500- fold expansion	81%	88% HbA, 10%	First-in-human transfusion of cRBCs; 41– 63% survival at day 26	
S10	Shah et al. (2016)	https://doi.org/10.1371/journal.pone.0166657	CD34+ HSPCs	Human cord blood	18	IMDM/Glutamax + AB serum, FBS, transferrin, insulin, heparin	Normox ic	4-step: proliferation + maturation	18,700- fold expansion	82% after filtration	Mixed fetal & adult (25% HbF)	Oxygen delivery in vivo confirmed	
\$11	Zhang et al. (2017)	https://doi.org/10.1002/sctm.17-0057	Hematopoi etic Stem and Progenitor Cells (HSPCs)	Human Cord Blood CD34 ⁺ cells	21 days	MDM with nutrition supplements: putrescine (100 µM), selenium (5 ng/mL), insulin (25 µg/mL), transferrin (200 µg/mL), folic acid (10 µg/mL), plus FBS (15%) in early stages Flt3L, SCF 10, IL-3 1, EPO 3 U/ml	Cultured at 37°C with 5% CO ₂ in air (normox ic conditio ns)	4-step process: Step 1: MM1SFT (SCF 100 ng/mL, TPO 50 ng/mL) Step 2: SE31F1FL1G M(15) (SCF 100 ng/mL, IL- 3 20 ng/mL, FL 100 ng/mL, EPO 6 IU/mL)	2.9×10^{17} total cells from 10^{6} CD34 ⁺ cells (up to $2 \times 10^{8-}$ fold expansion)	50.0% ± 5.7%	Normal hemoglob in detected; functional ity confirmed by hemoglob in content and oxygen equilibriu m curves	High-yield erythrocyte generation - In vivo terminal maturation (murine xenotransplantat ion) - Safe and functional in non-human primate model with	Used a bottle turning bioreactor system; large-scale culture feasible for clinical translation

S12	Lapillo ne et al.	https://doi.org/10.3324/haematol.2010.023556	Human iPSCs and	IMR90 fetal	45 days (20 EB +	IMDM, human plasma, SCF,	5% CO2; O2	Step 3: SE1F11L- 31FL(50) (IL-3 10 ng/mL, FL 50 ng/mL) Step 4: SE (SCF 100 ng/mL, EPO 6 IU/mL) EB formation + liquid	High erythroid	4 to 10%	Fetal (HbF) in	hemorrhagic anemia Functional HbF RBCs with CO	Erythroid commitmen
	(2010)		hESCs	fibrobla sts, FD136 adult fibrobla sts, hESC line H1	25 maturati on)	FLI3L, 1PO, BMP4, VEGF, IL- 3, IL-6, EPO SCF 100 ng/ml, TPO 100 ng/ml, FL 100 ng/ml, BMP4 10 ng/ml, VEGF 5 ng/ml, IL-3/6 5 ng/ml, EPO 3 U/ml	not	culture (3- stage cytokine addition)	yield, large- scale; up to 4.4 x 10 ⁸		vitro	binding; large- scale RBC production possible	t without co-culture or animal products
S13	Dias et al. (2011)	https://doi.org/10.1089/scd.2011.0078	hiPSC,	Transgen ic & transgen e-free fibroblas t iPSC	Up to 90	OP9 co-culture + SFEM + cytokines SCF 50–100 ng/ml, EPO 2–6 U/ml, IL-3 5 ng/ml, TPO 50 ng/ml, Dex 10 ⁻⁶ M	NA	2 methods: CD34+ expansion or reaggregation on MS5	6 x 10*	2-10%	 ε - and γ- globins Hb dominant; low β- globin 	Long-term expansion, robust erythropoiesis, scalable	
S14	Kobari et al. (2012)	https://doi.org/10.3324/haematol.2011.055566	hiPSC (normal & SCD)	FD-136, Amnioti c fluid	25	IMDM + human plasma + SCF, TPO, FL, BMP4, VEGF, IL-3/6, EPOSCF 100 ng/ml, TPO 100 ng/ml, FL 100 ng/ml, BMP4 10 ng/ml, UEGF 5 ng/ml, IL-3/6 5 ng/ml, EPO 3–4 U/ml	Normox ic	2-step EB + sequential cytokine culture (D0–25)	1.5 -2.8 x 10 ⁹	Yes 20 - 26%	HbF in vitro; switch to HbA in vivo	Full terminal maturation in vivo; HbA synthesis observed in mice	
S15	Park et al. (2020)	https://doi.org/10.1186/s12967-020-02403-y	hhiPSC (rare blood types)	PB- MNCs	~31	Serum-free Stemline II with basal + SCF, EPO, IL-3, HCSCF 100 ng/ml, EPO 6 IU/ml, IL-3 10 µg/ml, HC 1 µM, others in multi- step culture	5% CO ₂ , 37°C	EB formation, mesoderm induction, HSC, erythroid	Moderate yield (not quantified)	Yes (to reticulocy te stage)	Not clearly reported	Proof-of- concept for autologous rare blood RBCs from iPSC	