
Biomedical Research and Therapy 2025, 12(5):7418-7423

Open Access Full Text Article Review Article

1Central Laboratory, Qingdao Municipal
Hospital, Qingdao, Shandong, China
2Clinical Laboratory, Qingdao
Municipal Hospital, Qingdao,
Shandong, China

Correspondence

QingzhengWei, Clinical
Laboratory, Qingdao
Municipal Hospital, Qingdao,
Shandong, China

Email: 1270700065@qq.com

History
• Received: 18-7-2024
• Accepted: 13-3-2025
• Published Online: 31-5-2025

DOI : 10.15419/bmrat.v12i5.980

Copyright
© Biomedpress. This is an open-
access article distributed 
under the terms of the 
Creative Commons Attribution 
4.0 International license.

Non-Invasive Prenatal Testing: Advances, Applications, and
Limitations in Prenatal Screening

Ting Yu1, Xiaona Xu1, Qingzheng Wei2,*

ABSTRACT
Non-invasive prenatal testing (NIPT) is a prenatal screening technologybasedon the analysis of cell-
free fetal DNA (cfDNA) detected in maternal peripheral blood. It offers high detection efficiency for
common chromosomal aneuploidies, such as trisomy 21 (T21), trisomy 18 (T18), trisomy 13 (T13),
and sex chromosome aneuploidies (SCA). Additionally, NIPT has expanded to include the screen-
ing of subchromosomal microdeletions and microduplications, single-gene genetic diseases, and
has even demonstrated certain diagnostic value for placental-derived complications during preg-
nancy. However, some of the problems it presents, such as technical limitations and ethical or
psychological issues, cannot be overlooked. This article reviews the advancements and limitations
of NIPT in prenatal screening.
Key words: Cell-free fetal DNA, High-throughput sequencing, Non-invasive prenatal testing,
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INTRODUCTION
Since the 1980s, prenatal testing has significantly
contributed to reducing congenital disabilities and
improving population health. Traditional prenatal
screening techniques include ultrasound examina-
tion, serological screening, and chromosome kary-
otype analysis. Nonetheless, these approaches have
notable limitations: ultrasound is limited by weak
penetration and image distortion, leading to misdi-
agnosis or missed cases; serological screening has
relatively low accuracy; and invasive procedures like
amniocentesis and cord blood puncture carry risks of
intrauterine infection and miscarriage.
In recent years, high-throughput sequencing based
on cell-free DNA (cfDNA), also referred to as non-
invasive prenatal testing (NIPT), has emerged as a
powerful tool for detecting fetal chromosomal ane-
uploidy and has gradually become an essential com-
ponent of prenatal screening. Moreover, advances in
NIPT have expanded its applications to include pre-
natal screening of subchromosomal microdeletions
and microduplications, single-gene genetic diseases,
and pregnancy complications.
However, any emerging technology inevitably in-
troduces some negative consequences. Therefore,
this article summarizes the advancements in prena-
tal screening and analyzes the limitations of NIPT,
as well as the associated ethical and psychological
implications for pregnant women.

SOURCE AND DETECTION
PRINCIPLE OF CFDNA IN
MATERNAL PERIPHERAL BLOOD

As early as 1997, Lo et al.1 detected fetal Y chro-
mosome DNA in maternal peripheral blood, con-
firming the existence of cell-free DNA (cfDNA)
and establishing the theoretical foundation for non-
invasive prenatal testing (NIPT). Subsequent stud-
ies revealed that cfDNA concentration in maternal
peripheral blood increases with gestational age and
can be detected as early as the 7th week of preg-
nancy2. CfDNA is primarily derived from placental
trophoblasts and maternal hematopoietic cells3–5,
consisting of small fragments approximately 100–
200 base pairs in length, which account for 5%–
30% of the total cfDNA in maternal blood. After
childbirth, cfDNA rapidly degrades, becoming unde-
tectable within 2 hours, with an average half-life of
16.3 minutes6–8. For a long time, the low concen-
tration of fetal cfDNA and high background noise
from maternal DNA hindered its application in pre-
natal screening. However, with the advancement
of next-generation sequencing (NGS), this limita-
tion has been overcome. NGS offers high through-
put, enabling large-scale genomic sequencing. This
technology can simultaneously analyze hundreds of
thousands to millions of DNA sequences, allowing
for whole-genome sequencing of samples. By quan-
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tifying changes in the number of these DNA frag-
ments, bioinformatics analysis can detect fetal chro-
mosomal abnormalities. Due to its efficacy and accu-
racy, NGS-based cfDNA analysis has been adopted
for clinical prenatal testing.

CLINICAL APPLICATION OF NIPT
Detection of Fetal T21, T18, T13, and SCA
Non-invasive prenatal testing (NIPT) is highly sen-
sitive and specific for detecting aneuploidies in sin-
gleton fetuses on chromosomes 21, 18, and 13. A
meta-analysis by GilMM et al.9 of over 200,000 preg-
nant women with singleton fetuses found that NIPT
had detection rates of 99.7% for T21, 97.9% for T18,
and 99.7% for T13, with false-positive rates of 0.04%
for each. However, current reports on NIPT’s accu-
racy vary. Some studies report a positive predictive
value (PPV) of 83% to 92.9% for NIPT in detecting sex
chromosome aneuploidies (SCA) in singleton preg-
nancies10–12, while others report a PPV as low as
53.1%13.
Additionally, with the rising incidence of infertility,
the number of twin or multiple pregnancies result-
ing from assisted reproductive technology has in-
creased annually. Studies have evaluated NIPT’s ac-
curacy in detecting chromosomal abnormalities in
twins, showing that cell-free DNA (cfDNA) testing
for T21, T18, and T13 in twin pregnancies yields
results comparable to those in singleton pregnan-
cies14–16. However, the limited number of SCA
cases in these studies precludes an accurate assess-
ment of cfDNA’s predictive value for these anoma-
lies.

Detection of Autosomal Abnormali-
ties and Subchromosomal Microdele-
tions/Microduplications
With the continuous development of sequencing
technologies and advances in clinical settings, in-
ternational and domestic consensus guidelines have
expanded the applications of non-invasive prenatal
testing (NIPT). These now include screening for ad-
ditional chromosomal numerical abnormalities and
microdeletion/microduplication syndromes. In pub-
lished studies, researchers found that a high-risk
NIPT result for chromosomes 2, 9, and 22 could
be confirmed as fetal trisomy or mosaic trisomy
through follow-up tests such as fluorescence in situ
hybridization (FISH) and DNA microarray17–19. Al-
though NIPT has demonstrated potential for detect-
ing other autosomal abnormalities, its application
to all chromosomes remains controversial due to

ethical concerns, increased psychological burden on
pregnant women, and the potential for unnecessary
invasive diagnostic procedures.
Microdeletion/microduplication syndromes, caused
by chromosomal copy number variations (CNVs),
are characterized by complex phenotypes and ac-
count for 1–2% of congenital malformations in
neonates. The accuracy of NIPT for these con-
ditions depends on factors such as: the propor-
tion of cell-free DNA (cfDNA) in maternal plasma,
the size of the fetal microdeletion/microduplication,
sequencing coverage, and bioinformatics analysis
methods20,21.
NIPT-plus, an advanced version of NIPT, improves
the detection rate of microdeletion/microduplication
syndromes by increasing sequencing depth and re-
fining algorithms—without altering clinical proce-
dures, requiring additional blood samples, or extend-
ing reporting time22. For example, a study by Xue et
al.23 reported that NIPT-plus achieved an 80% posi-
tive predictive value (PPV) for 22q11.2 microdupli-
cation syndrome, with PPVs of 75% for DiGeorge
syndrome, and 50% for both Prader-Willi/Angelman
syndrome and Cri-du-chat syndrome.
Currently, NIPT screening for common trisomies
and sex chromosome aneuploidies (SCA) is widely
accepted among pregnant women. However, its use
for microdeletion/microduplication syndromes re-
mains debated. Opponents argue that the relatively
low PPV, high false-positive rate, and uncertain clin-
ical significance of some CNVs create challenges in
managing high-risk results. Proponents, however,
emphasize that the primary goal of prenatal screen-
ing is to reduce the burden of fetal chromosomal ab-
normalities at birth. Thus, they advocate for includ-
ing even low-PPVmicrodeletions/microduplications
in screening programs.

Detection of Monogenic Diseases
Single-gene inherited diseases are a significant cause
of congenital disabilities, resulting from pathogenic
variants in a single gene and affecting approximately
1% of neonates24. Although each individual mono-
genic disease is rare, collectively, they are prevalent,
with over 6,000 distinct disorders of known patho-
genesis identified. Their combined incidence is simi-
lar to that of chromosomal disorders, with dominant
conditions representing more than half of cases25.
Affected children often present with severe symp-
toms and have limited treatment options. Further-
more, since many cases arise from de novo muta-
tions, these children frequently lack a family history
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of the disease, and their parents usually exhibit nor-
mal phenotypes. This makes prenatal diagnosis par-
ticularly challenging and often leads to underdetec-
tion.
Numerous studies have reported the use of non-
invasive prenatal testing (NIPT) for single-gene
disorders, including thalassemia, phenylketonuria,
and Duchenne muscular dystrophy26–28. Notably,
follow-up studies with invasive diagnostic confir-
mation have demonstrated strong concordance be-
tween NIPT and traditional diagnostic methods. In
2022, a study by Baylor College ofMedicine screened
over 2,000 individuals for 25 dominant monogenic
diseases (involving 30 genes) and reported a positive
detection rate of 5.7%, highlighting the clinical utility
of NIPT for dominant monogenic disorders29. How-
ever, NIPT for fetal single-gene diseases has not yet
been widely adopted in clinical practice due to high
costs, lengthy turnaround times, and complex bioin-
formatic analysis.

Prenatal screening for pregnancy compli-
cations
Common complications during pregnancy include
gestational diabetes mellitus (GDM), intrahepatic
cholestasis of pregnancy (ICP), and preeclampsia.
These conditions are highly prevalent, yet reliable
methods for their early diagnosis remain lacking.
Since cell-free DNA (cfDNA) is primarily derived
from the placenta—the origin of many pregnancy
complications—researchers have explored the po-
tential of cfDNA fragment analysis for molecular de-
tection. This approach has demonstrated promise
not only for predicting fetal chromosomal abnormal-
ities but also for assessing the risk of pregnancy com-
plications in the mother.
GDM poses both short- and long-term risks to moth-
ers and fetuses. Affected women face higher risks of
polyhydramnios, metabolic disorders, and cesarean
delivery, while their fetuses may experience macro-
somia, growth restriction, and an elevated lifelong
risk of diabetes and obesity. Bauer et al. found
an association between elevated cfDNA levels and
GDM, suggesting cfDNA’s potential as a predictive
marker30.
ICP is characterized by severe pruritus, abnormal
liver function, and elevated serum bile acids. This
condition has a notable incidence during pregnancy
and is associatedwith premature birth and intrauter-
ine fetal death. A study of 831 pregnant women who
received NIPT revealed that maternal cfDNA levels
were significantly elevated in ICP cases compared to
controls31.

Preeclampsia presents with hypertension, edema,
and proteinuria. Its pathogenesis involves reduced
uterine-placental blood supply and/or increased
fetal-placental demand, leading to a perfusion mis-
match. This triggers the release of stress-related fac-
tors from the placenta and disrupts the balance be-
tween pro-angiogenic placental growth factor and
anti-angiogenic soluble fms-like tyrosine kinase-1
(sFlt-1). Kumar et al. demonstrated that cfDNA
levels are higher in preeclamptic women than in
healthy controls32. Moreover, early-pregnancy
whole-genome sequencing of plasma cfDNA com-
bined with preeclampsia-associated promoter anal-
ysis achieved a prediction accuracy of 83%33.

LIMITATIONS OF NIPT
Limitations of Technology and Clinical
Applications
Non-invasive prenatal testing (NIPT) relies on short
fragments of cell-free DNA (cfDNA) from the pla-
centa in maternal peripheral blood, typically less
than 200 bp in length. These fetal cfDNA signals
may be diluted or obscured by maternal background
DNA, increasing the risk of false-negative results
for microdeletion/microduplication syndromes and
monogenic diseases. The accuracy of NIPT is highly
dependent on the fetal fraction (the proportion of fe-
tal cfDNA in maternal blood). A low fetal fraction—
due to early gestational age (<10 weeks) or maternal
obesity (BMI ≥ 30)—increases the risk of false nega-
tives34.
Fetal cfDNA primarily originates from placental
trophoblast cells. Discrepancies between the pla-
cental and fetal karyotypes (e.g., confined placen-
tal mosaicism) can lead to false-positive or false-
negative results35. Similarly, in twin pregnancies,
an abnormal or ”vanishing” twin may cause er-
roneous NIPT results36. Maternal chromosomal
abnormalities—such as sex chromosome chimerism
or microdeletions—may also be misattributed to the
fetus, leading to false positives37. Additionally, ma-
lignant tumors in the mother can release tumor-
derived DNA with chromosomal abnormalities, fur-
ther increasing the risk of false positives38.
Notably, NIPT cannot detect fetal structural abnor-
malities, such as neural tube defects or cardiac mal-
formations; these still require ultrasound assess-
ment.
Although NIPT is a screening tool, some patients
mistakenly believe it can replace diagnostic tests like
amniocentesis. Positive NIPT results must be con-
firmed through chorionic villus sampling (CVS) or
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amniocentesis. However, CVS carries a risk of mis-
diagnosis due to placental mosaicism. Furthermore,
pregnancies involving embryo donation or surro-
gacy may complicate result interpretation due to ge-
netic disparities between the mother and fetus. Fi-
nally, most NIPT algorithms are optimized for sin-
gleton pregnancies, and their accuracy in multiple
gestations requires improvement39.

Ethical and Psychological Challenges of
NIPT
NIPT may lead to overtreatment, as false-positive
results can prompt unnecessary invasive diagnostic
procedures, increasing the risk of fetal loss. Con-
versely, false-negative results may result in medi-
cal disputes. Some medical institutions fail to ade-
quately communicate the limitations of NIPT, lead-
ing patients to overestimate its accuracy and caus-
ing some pregnantwomen tomistakenly believe that
NIPT can detect all birth defects. Furthermore, NIPT
can determine fetal sex early, raising concerns about
misuse in regions with a strong gender preference.
Beyond considering NIPT’s accuracy, the psycho-
logical impact on pregnant women must not be
overlooked40. Before testing, pregnant women
should carefully weigh the benefits of early detec-
tion against potential risks, such as the stress of
receiving positive results. High-risk results often
trigger acute anxiety or depression, and the deci-
sion to undergo invasive procedures (e.g., amnio-
centesis) may create a dilemma between miscarriage
risks and reproductive choices. Additionally, de-
ciding whether to continue a pregnancy upon diag-
nosing chromosomal abnormalities with mild phe-
notypes (e.g., XXY, XXX, or XYY) or microdele-
tion/microduplication syndromes can cause conflicts
between partners.
False positives not only pose physical risks through
unnecessary invasive tests but may also undermine
pregnant women’s trust in the medical system. Con-
versely, false negatives—where an abnormality is
unexpectedly discovered after delivery—may lead to
anger or depression in families due to lack of prior
warning.

CONCLUSIONS
Prenatal screening is particularly important because
effective treatments for chromosomal diseases are
currently lacking, and the risk of having a child with
chromosomal abnormalities increases with maternal
age, placing a significant burden on families and so-
ciety. NIPT is a non-invasive, safe, and relatively

painless test that has proven effective in detecting
trisomy 21, trisomy 18, trisomy 13, and SCA, lead-
ing to widespread public acceptance. However, its
application in detecting other chromosomal aneu-
ploidies, fetal chromosome copy number variations,
single-gene genetic disorders, and pregnancy com-
plications remains in the exploratory stage, with
significant limitations in technical principles, social
ethics, and the psychological impact on pregnant
women.
In the future, balancing the medical benefits and so-
cial risks of NIPT will require technological innova-
tion, standardized management, and ethical guide-
lines to ensure precise and responsible clinical use.

ABBREVIATIONS
BMI (Body Mass Index) is a measure of body fat
based on height and weight; bp (base pairs) are
units of length for DNA fragments (e.g., 100–200 bp);
cfDNA (cell-free DNA) refers to short DNA frag-
ments circulating in the maternal bloodstream, pri-
marily fetal DNA from the placenta in prenatal test-
ing; CNVs (copy number variations) are gains or
losses of DNA segments, which can result in mi-
crodeletions or microduplications; CVS (chorionic
villus sampling) is an invasive prenatal diagnostic
procedure that tests placental tissue for genetic ab-
normalities; FISH (fluorescence in situ hybridiza-
tion) is a laboratory technique used to detect and
localize specific DNA sequences on chromosomes;
GDM (gestational diabetes mellitus) is a form of di-
abetes diagnosed during pregnancy; ICP (intrahep-
atic cholestasis of pregnancy) is a liver disorder in
pregnancy, associated with severe itching and el-
evated bile acids; NGS (next-generation sequenc-
ing) is a high-throughput DNA sequencing technol-
ogy enabling large-scale analysis, which underlies
many NIPT workflows; NIPT (non-invasive prena-
tal testing) is a prenatal screening method analyz-
ing cfDNA in maternal blood to detect chromoso-
mal abnormalities in the fetus; PPV (positive pre-
dictive value) represents the likelihood that a posi-
tive test result correctly indicates the presence of a
condition; SCA (sex chromosome aneuploidies) are
abnormalities in the number of X or Y chromosomes
(e.g., Turner syndrome [XO], Klinefelter syndrome
[XXY]); sFlt-1 (soluble fms-like tyrosine kinase-1) is
an anti-angiogenic factor implicated in preeclamp-
sia; T13 (trisomy 13) refers to an extra copy of chro-
mosome 13; T18 (trisomy 18) is an extra copy of
chromosome 18; and T21 (trisomy 21) is an extra
copy of chromosome 21 (Down syndrome).
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