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ABSTRACT
Tumor targeting peptides (TTPs) have emerged as new therapeutic and diagnostic tools in oncol-
ogy, due to their low immunogenicity, high specificity, and ability to efficiently penetrate tumor
cells and tissues. They exert their effects using various mechanisms such as receptor-mediated
targeting, cell-penetrating properties, and enzyme-responsive activation, allowing selective deliv-
ery of drugs, nanoparticles, and imaging agents to cancer cells. Advances in peptide engineer-
ing, such as D-amino acid incorporation, cyclization, and multivalent designs, have substantially
enhanced their stability, affinity, and bioavailability. They are widely utilized in immunotherapy,
precision imaging, and targeted drug delivery, thus improving cancer detection and outcomes.
Recent developments, including peptide–drug conjugates, hybrid peptide–nanoparticle systems,
and peptide-based immunemodulators, have significantly broadened the clinical potential of TTPs.
This review highlights the fundamental mechanisms, therapeutic applications, and cutting-edge
advancements in TTPs, underscoring their role in personalized cancer therapy.
Key words: Tumor targeting peptides (TTPs), Tumor microenvironment (TME), Receptors, PLGA
(poly(lactic-co-glycolic acid))

INTRODUCTION
Peptides are short chains of amino acids, consisting
of 2-50 amino acids, linked by peptide bonds. They
play a crucial role in biological processes and have a
wide range of applications in medicine, biotechnol-
ogy, and research1. Many peptides function as hor-
mones, regulating various physiological processes
(e.g., insulin, glucagon). Some act as neurotrans-
mitters, transmitting signals in the nervous system
(e.g., endorphins)2. Some peptides have antimicro-
bial activity, serving as natural antibiotics (e.g., de-
fensins). The therapeutic potential of peptides is
vast, ranging from cancer treatment and manage-
ment of metabolic disorders to antiviral therapies
and vaccine development3. Advances in peptide
synthesis, such as solid-phase peptide synthesis and
automated synthesis, have significantly enhanced
their production efficiency4,5. Furthermore, peptide
modifications and delivery systems have improved
their stability and bioavailability. They also serve as
valuable diagnostic tools, contributing to fields such
as protein–protein interactions and biomarker iden-
tification6. Their applications extend to cosmetics,
where they promote collagen production and wound
healing7. Despite challenges such as cost-effective
production, ongoing innovation in peptide technol-
ogy continues to expand their utility in medicine,
biotechnology, and beyond8.

Peptides can be designed to bind specifically to tar-
get molecules, making them highly specific in their
action. Generally, peptides have lower toxicity than
small-molecule drugs9. Peptides can be easily mod-
ified to enhance their stability and activity. They
have emerged as promising agents in cancer treat-
ment due to their ability to specifically target can-
cer cells, modulate the immune response, and de-
liver therapeutic payloads10. Their versatility and
precision make them valuable for developing tar-
geted therapies compared to traditional chemother-
apies. Peptides can target specific receptors on can-
cer cells, delivering cytotoxic agents or inhibiting tu-
mor growth11. Peptides can be conjugated to cyto-
toxic drugs, directing these drugs specifically to can-
cer cells, thereby minimizing the damage to healthy
cells12. The peptide sequence binds to receptors
overexpressed on cancer cells, allowing the drug to
be directly released at the cancer site. Peptides de-
signed to bind to tumor-specific antigens or recep-
tors (e.g., EGFR, HER2) enhance the delivery of ther-
apeutic agents (Figure 1 )13. Peptides targeting in-
tegrin receptors overexpressed in tumors can deliver
imaging or therapeutic agents14. Peptides derived
from tumor antigens can be used to stimulate the im-
mune system to recognize and attack cancer cells15.
Some peptides have inherent cytotoxic properties,
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Figure 1: Schematic representation of TTP mechanisms: Receptor-mediated targeting, Cell-penetrating pep-
tide internalization, Enzyme-responsive activation.

inducing apoptosis and disrupting cancer cell mem-
branes (Figure 1 )16.

MECHANISM OF TUMOR
TARGETING PEPTIDES
Receptor-Mediated Targeting by TTPs for
Facilitating Delivery
Receptor-mediated targeting by TTPs leverages the
overexpression of specific receptors on the tumor
surface. These peptides are specifically designed to
bind these receptors, facilitating the targeted deliv-
ery of therapeutic agents, imaging compounds, and
diagnostic markers directly to the tumor site17. On
binding to their target receptor, these peptides can
facilitate the internalization of the peptide–receptor
complex, allowing for intracellular delivery of thera-
peutic agents (Figure 2 )18. TTPs are engineered to
bind with high affinity and specificity to the recep-
tors that are overexpressed on tumor cells19. This
selective binding ensures that the peptide is deliv-
ered to tumor cells, sparing healthy tissues. Upon
receptor binding, the peptide–receptor complex is
internalized by the cancer cell through endocyto-
sis. This internalization allows the payload to be de-

livered directly into cancer cells, thereby enhancing
therapeutic efficiency (Figure 2 )20. Once inside the
cell, the therapeutic agent (e.g., drug, toxin, or gene
therapy vector) is released, where it can exert its in-
tended effect21.
Most notably, clathrin-mediated endocytosis is the
predominant route for internalization of receptor–
ligand complexes in most mammalian cells. In CME,
receptor complexes accumulate in clathrin-coated
pits (~100–150 nm in diameter), where adaptor pro-
teins (e.g., AP-2) recruit clathrin triskelia to form a
coated vesicle. Dynamin then pinches off the vesicle,
which uncoats and fuses with early endosomes22.
Vesicles of this size (~100 nm) are well-suited for
the bulk uptake of peptide–drug conjugates. Typi-
cally, acidification within late endosomes and lyso-
somes promotes cargo release, but also risks enzy-
matic degradation; thus, TTP designs often incor-
porate endosomal escape motifs to ensure payload
release into the cytosol before lysosomal degrada-
tion23. Moreover, caveolin-mediated endocytosis
occurs via flask-shaped caveolae (~60–80 nm in di-
ameter) enriched in caveolin-1 and Cavin proteins.
Ligand–receptor binding induces caveolar budding
in a dynamin-dependent manner, forming caveolar
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Figure 2: Mechanismof receptor-mediated endocytosis: TTP binds to overexpressed receptors, Internalization
via clathrin-coated vesicles, Endosomal escape, Intracellular release of therapeutic payload.

carriers that bypass early endosomes and lysosomes,
often trafficking to caveosomes or the Golgi and en-
doplasmic reticulum24. The smaller vesicle size and
nonacidic routing protect sensitive cargo (e.g., pep-
tides, proteins, nucleic acids) from degradation, but
may slow release kinetics, necessitating specialized
release triggers in TTP designs25.

Implications for TTP Design and Drug Re-
lease
For CME-internalized cargos, engineering pH-
sensitive or membrane-disruptive elements (e.g.,
histidine-rich sequences) can accelerate endosomal
escape, thus maximizing cytosolic delivery before
lysosomal degradation26. CvME avoids lysosomes,
thereby protecting delicate agents like siRNA and
proteins from degradation. However, because it op-
erates more slowly, special linkers responsive to spe-
cific signals (e.g., redox-sensitive disulfides) may be
required to release cargos at the optimal time27.
Targeted trafficking and differential routing can be
leveraged to direct payloads to specific intracellu-
lar organelles; for example, CvME-mediated traffick-
ing to the ER favors the delivery of unfolded protein
therapeutics28.

This process ensures that the cytotoxic effect re-
mains confined to cancer cells, thereby reducing
systemic side effects29. Some common recep-
tors targeted by tumor-targeting peptides are inte-
grins, which are involved in tumor angiogenesis and
metastasis, thus making them highly effective tar-
gets for TTPs. For example, RGD peptides (arginine-
glycine-aspartic acid) specifically target these inte-
grins to deliver therapeutic agents and imaging com-
pounds30. EGFR, which is overexpressed in var-
ious cancer types, is targeted by peptides to in-
hibit growth signals and deliver cytotoxic agents.
Peptides that bind EGFR can deliver chemother-
apeutic drugs specifically to EGFR-expressing tu-
mor cells31. Similarly, HER2 is commonly overex-
pressed in breast cancer and other tumor types, fa-
cilitating the effective delivery of therapeutic agents
by HER2-targeting peptides32. Folate receptors are
overexpressed in certain cancers, making folate-
conjugated peptides useful for targeted drug deliv-
ery. Moreover, folate-linked peptides facilitate the
delivery of chemotherapy drugs to folate receptor-
positive tumors33. Prostate-specific membrane anti-
gen (PSMA) is highly expressed in prostate cancer
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cells, making it an ideal target for peptide-based de-
livery systems34. Peptides targeting PSMA can de-
liver radiolabeled compounds for imaging or thera-
peutic agents, enabling targeted treatment35. Car-
bonic anhydrase IX (CA-IX) is overexpressed in hy-
poxic tumors and can be targeted by peptides to de-
liver therapeutic agents or imaging probes36.

Targeting the Tumor Microenvironment
The tumor microenvironment (TME) is a highly
complex, adaptive system comprising malignant
cells, immune cells, stromal elements, blood vessels,
and extracellular matrix (ECM) components. It not
only drives tumor growth but also significantly con-
tributes to therapeutic resistance, immune evasion,
and metastasis37. Acknowledging the TME’s active
role in tumor biology has led to the development
of therapeutic strategies aiming to disrupt its sup-
portive functions, including vascular normalization,
immune response reprogramming, and ECM remod-
eling, ultimately enhancing the efficacy of conven-
tional therapies38. A key factor underlying the com-
plexity of the TME is the genetic and phenotypic
heterogeneity within tumor cell populations. This
diversity enables cancer cells to interact with sur-
rounding stromal components via distinct paracrine
signaling pathways, which shape their behavior and
further promote treatment resistance. The influ-
ence of this heterogeneity extends to various stromal
cells, including cancer-associated fibroblasts (CAFs),
which respond to tumor-derived signals and con-
tribute to ECM remodeling, immune modulation,
and therapy resistance39. Although CAFs represent
a substantial stromal population, they are part of a
broader cellular network that includes endothelial
cells, pericytes, and immune infiltrates. Endothelial
cells form blood vessels that sustain tumor growth
and enable metastatic dissemination. Working in
concert, TME components ensure that the tumor re-
mains protected and fully functional40. A more de-
tailed discussion of CAF biology and its therapeutic
implications appears in Section 3.3. Here, the focus
remains on emphasizing the TME as a whole, un-
derscoring the need for integrated therapeutic ap-
proaches that target both tumor cells and their sup-
portive ecosystem to overcome resistance and im-
prove clinical outcomes41.

STRATEGIES FOR TARGETING
THE TUMOR
MICROENVIRONMENT

Inhibiting Angiogenesis
Inhibiting angiogenesis is a crucial strategy in can-
cer therapy that aims to starve the tumor of the
blood supply essential for its growth and metasta-
sis42. Tumor-targeting peptides can be designed
to specifically bind to angiogenic markers on en-
dothelial cells, thereby delivering therapeutic agents
that inhibit the formation of new blood vessels43.
This targeted approach ensures that anti-angiogenic
treatments are delivered precisely where they are
needed, helping reduce systemic toxicity and opti-
mizing therapeutic efficiency44. Vascular endothe-
lial growth factor (VEGF) and its receptor (VEGFR)
are key regulators of angiogenesis45. TTPs can be
designed to bind to VEGF or VEGFR, blocking their
interaction and inhibiting the angiogenic signaling
pathway. For example, Bevacizumab (Avastin) is a
monoclonal antibody against VEGF46.

Modulating Immune Response
An immunosuppressive environment persists in
most tumors, leading to a diminished immune re-
sponse and allowing cancer cells to remain un-
detected due to myeloid-derived suppressor cells,
regulatory T cells, tumor-associated macrophages,
and inhibitory cytokines47. Patients experiencing
these immunosuppressive effects can be treated with
immune checkpoint inhibitors, which remove in-
hibitory signals on T cells and allow them to fight
the tumor again. When PD-L1 or PD-L2 bind to
the PD-1 receptor on activated T cells, the cells
become exhausted, and robust immune responses
are halted. Pembrolizumab (Keytruda) is a human-
ized IgG4 monoclonal antibody that binds the pro-
grammed cell death-1 (PD-1) receptor on activated
T cells and prevents its interaction with PD-L1 and
PD-L2, restoring T-cell proliferation and cytotoxicity
against tumor cells48. Nivolumab likewise targets
PD-1 to release the PD-1–mediated brake on T cells,
and has demonstrated clinical efficacy across mul-
tiple advanced malignancies by enhancing T-cell–
mediated tumor cell killing49.
Therapeutic cancer vaccines represent another
modality to stimulate antitumor immunity by
presenting tumor antigens to a patient’s antigen-
presenting cells. Sipuleucel-T (Provenge) is an
FDA-approved autologous cellular vaccine for
metastatic prostate cancer in which a patient’s
dendritic cells are harvested, incubated ex vivo
with a fusion protein of prostatic acid phosphatase
and granulocyte–macrophage colony-stimulating
factor, and then reinfused to elicit a sustained,
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antigen-specific T-cell response and prolong overall
survival50. Finally, reprogramming of tumor-
associated macrophages from a pro-tumorigenic
M2-like state to an antitumorigenic M1-like
phenotype can be achieved by targeting the
colony-stimulating factor-1 receptor (CSF-1R).
Small-molecule inhibitors or peptides against
CSF-1R deplete or re-educate M2 macrophages,
enhancing antigen presentation and fostering a
pro-inflammatory microenvironment conducive to
tumor rejection51.

Targeting Cancer-Associated Fibroblasts
(CAFs)
Beyond directly targeting cancer cells, tumor-
targeting peptides are designed to disrupt the tumor-
supportive functions of cancer-associated fibrob-
lasts (CAFs), which are essential to tumor progres-
sion. Cancer-associated fibroblasts (CAFs) are a
major stromal component of the tumor microen-
vironment (TME) and play a critical role in sup-
porting tumor progression, invasion, angiogenesis,
and immune evasion52. With growth factors, cy-
tokines, chemokines, and enzymes, CAFs modify
cancer cells’ responses by remodeling components
of the ECM. This remodeling helps tumor cells mi-
grate more easily to other parts of the body and can
also force some of the drug’s dose to remain in the in-
testines, thus reducing its effectiveness. In addition
to shaping the stroma, CAFs secrete TGF-β , VEGF,
and FGFs, thereby promoting faster growth of cancer
cells and fostering new blood vessel development.
Moreover, cells in the CAF system release cytokines
and chemokines that inhibit the immune response
against cancer within the body53.
Recent research finds that CAF populations have
many different functions. Distinct subtypes such as
myofibroblastic CAFs (myCAFs) and inflammatory
CAFs (iCAFs) differ in their phenotypic markers and
roles. While myCAFs contribute to ECM stiffening
through expression of α-smooth muscle actin (α-
SMA) and collagen crosslinking enzymes, iCAFs are
characterized by the secretion of pro-inflammatory
cytokines like IL-6 and CXCL12, which enhance im-
mune evasion and drive tumor growth54. Target-
ing CAFs therapeutically has become an area of in-
tense investigation. One promising approach in-
volves the use of tumor-targeting peptides (TTPs)
that bind selectively to fibroblast activation protein
(FAP), a surface protein highly expressed on CAFs.
These peptides can serve as carriers for cytotoxic
agents or imaging probes, enabling precise deliv-
ery to the CAF-rich regions of tumors55. Peptides

designed to inhibit key signaling pathways, such
as Hedgehog signaling, have also shown potential
in reducing CAF activation and tumor-supportive
functions. Additionally, efforts are underway to de-
velop peptide-based inhibitors against matrix met-
alloproteinases (MMPs) and other ECM-modifying
enzymes secreted by CAFs, aiming to limit their re-
modeling activity and improve drug penetration56.
By specifically disrupting CAF functions, these
strategies aim to break down the protective stromal
barrier that surrounds tumors, reduce resistance to
chemotherapy, and enhance overall treatment effi-
cacy. As understanding of CAF heterogeneity con-
tinues to evolve, tailored interventions may offer
more precise and effective ways to neutralize their
tumor-promoting roles57.

Disrupting Extracellular Matrix
Disrupting the extracellularmatrix (ECM)within the
tumor microenvironment (TME) is a critical strategy
in cancer therapy58. Using tumor-targeting peptides
(TTPs) against the extracellular matrix can reduce
tumor growth and make other treatment methods
more effective59. Targeting the ECM with TTPs can
inhibit these processes and enhance the effectiveness
of other therapies60. Attaching peptides to specific
ECM components, such as fibronectin or collagen,
can modify tumor development61. Peptides can in-
hibit matrix metalloproteinases (MMPs), which de-
grade ECM components and facilitate tumor inva-
sion. For example, peptides mimicking MMP in-
hibitors, such as marimastat, can help prevent ECM
degradation62. Peptides designed to bind specific
ECM components can alter a tumor’s structural in-
tegrity. For example, peptides targeting fibronectin
or collagen in the ECM are notable examples63.
Disruption of the extracellular matrix with tumor-
targeting peptides offers a multifaceted approach to
cancer therapy by interfering with the structural and
signaling functions of the ECM that support tumor
growth and invasion64.

Exploiting Hypoxia and Acidity
Tumors often develop regions with low oxygen lev-
els due to abnormal blood vessel formation and rapid
tumor growth that consumes oxygen more quickly
than it can be adequately supplied. Hypoxia triggers
the expression of hypoxia-inducible factors (HIFs),
which help tumors survive, promote new blood ves-
sel formation, and spread. To capitalize on this fea-
ture, TTPs and prodrugs can be tailored to acti-
vate specifically in hypoxic areas while remaining
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inactive under normal oxygen levels, thus reducing
damage to healthy tissues. For example, hypoxia-
responsive linkers such as 2-nitroimidazole are com-
monly used. Under low oxygen, nitro-reductase en-
zymes convert the nitro group into an amino group,
triggering drug release65. Azobenzene-based link-
ers have also been incorporated into antibody drug
conjugates (ADCs) for selective drug delivery in hy-
poxic tumor tissue66.
Prodrugs are inactive compounds that only become
active in hypoxic conditions, targeting low-oxygen
tumor cells specifically. Hypoxia-responsive pep-
tides are engineered to release their drugs when ex-
posed to low oxygen levels. These peptides are of-
ten combined with drugs that are triggered by HIFs
or enzymes overexpressed in hypoxia, like nitroim-
idazole derivatives67. To further extend TTP appli-
cations beyond simple ligand–receptor binding, re-
cent designs incorporate stimuli-responsive linkers
and motifs that react specifically to TME cues, most
prominently pH and hypoxia. Among pH-sensitive
linkers, hydrazone bonds are the most widely used.
They remain stable in blood (pH 7.2–7.4) but hy-
drolyze rapidly in themildly acidic TME (pH 6.5–6.9)
or endosomal compartments (pH ≤ 5.5)68. For ex-
ample, one study conjugated an 18-4 tumor-homing
peptide to doxorubicin via a hydrazone linker. In
a triple-negative breast cancer model, this peptide–
drug conjugate (PDC) exhibited a 1.4-fold increase in
intratumoral doxorubicin accumulation and a 1.3–
2.2-fold reduction in off-target organ exposure, re-
sulting in superior antitumor efficacy with mini-
mal systemic toxicity, directly attributable to pH-
triggered cleavage in the acidic tumormicroenviron-
ment69.
Acetal linkers offer an alternative pH-sensitive strat-
egy with tunable hydrolysis kinetics; one study ex-
amined multiple acetal-based linkers and showed
that each unit decrease in pH increased the acetal
hydrolysis rate by an order of magnitude. At pH
5.0, half-lives ranged from seconds to days, whereas
stability at pH 7.4 was maintained70. In addition,
hypoxia-responsive motifs (i.e., 2-Nitroimidazole)
are among the most common hypoxia-sensing
groups. Under low-oxygen conditions (pO2 < 10
mmHg), intracellular nitro-reductases reduce the ni-
tro group to an aminoimidazole, converting a hy-
drophobic motif to a hydrophilic one. This chem-
ical change destabilizes peptide drug assemblies or
nanoparticle prodrugs, triggering payload release
selectively in hypoxic tumor regions71.

Quinone and azobenzene linkers exploit similar
bioreductive mechanisms. Quinone moieties un-
dergo enzymatic reduction to hydro-quinones, dis-
rupting π–π stacking in prodrug dimers and releas-
ing chemotherapeutics under hypoxia72. Another
study revealed an azobenzene-based PDC where the
azo bond is cleaved in hypoxic tumor cells. This
cleavage not only liberates the drug but also alters
its subcellular localization, enhancing cytotoxicity
specifically in oxygen-deprived regions73.

APPLICATIONS OF
TUMOR-TARGETING PEPTIDES
Drug Delivery
Peptides are conjugatedwith cytotoxic drugs to form
peptide-drug conjugates, ensuring selective deliv-
ery to tumor cells while minimizing systemic toxi-
city74. Peptides targeting integrins or other specific
receptors overexpressed on tumor cells, such as the
RGD peptide for αvβ3 integrin, belong to this cate-
gory75,76. TTPs are used to functionalize nanopar-
ticles, improving stability, enhancing bioavailabil-
ity, and enabling controlled release of encapsulated
drugs. Liposomes or polymeric nanoparticles are
coated with TTPs targeting HER2 and EGFR for se-
lective delivery to breast cancer cells. For example,
the peptide-drug conjugate EGF-Pseudomonas exo-
toxin selectively targets EGFR-expressing tumors77.

Imaging and Diagnostics
TTPs play a crucial role in advancing imaging
and diagnostic applications in cancer management.
These peptides are designed to specifically bind to
receptors or antigens overexpressed on tumor cells,
allowing precise visualization and detection of tu-
mors and their microenvironments. TTPs are con-
jugated with fluorescent dyes, allowing for the visu-
alization of tumors using fluorescencemicroscopy or
in vivo imaging systems78. Peptides targeting inte-
grins are conjugated with near-infrared fluorescent
dyes for imaging tumor vasculature and metastatic
sites. TTPs are labeled with positron-emitting ra-
dionuclides (such as 18F or 64Cu), enabling the de-
tection of tumors through PET scans79. Peptides
targeting somatostatin receptors, which are overex-
pressed in neuroendocrine tumors, are labeled with
68Ga for PET imaging80. TTPs are labeled with
gamma-emitting radionuclides, such as 99mTc, al-
lowing for SPECT imaging of tumors81. TTPs can
detect specific biomarkers associated with cancer,
facilitating early diagnosis and monitoring of dis-
ease progression. Peptides targeting EGFR are used
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in assays to detect elevated levels of EGFR in blood
samples of patients with certain cancers82. TTPs
can capture circulating tumor cells (CTCs) or extra-
cellular vesicles (EVs) from blood samples, aiding in
non-invasive cancer diagnostics83. Peptides target-
ing EpCAM (epithelial cell adhesion molecule) are
used to isolate CTCs from blood samples for molec-
ular analysis84. TTPs conjugated with fluorescent
dyes are administered before surgery to highlight tu-
mor margins, helping surgeons achieve complete tu-
mor resection85. Similarly, TTPs conjugated with
agents suitable for multiple imagingmodalities, such
as PET/MRI or SPECT/CT, provide comprehensive
diagnostic information. Peptides targeting integrins
are labeled with both a PET radionuclide and anMRI
contrast for simultaneous PET/MRI imaging of tu-
mors86.

Therapeutic Vaccines
Tumor-associated antigens (TAAs) or neoantigens
(mutated antigens unique to tumor cells) are iden-
tified and used to develop peptide-based vaccines.
These peptides derived from these antigens are pre-
sented by major histocompatibility complex (MHC)
molecules on the surface of antigen-presenting cells
(APCs), such as dendritic cells. This presentation
leads to activation of T cells, particularly cyto-
toxic T lymphocytes (CTLs), which can recognize
and kill tumor cells expressing these antigens87.
Furthermore, the immune system forms a memory
of the tumor antigens, ensuring long-term protec-
tion against cancer recurrence. Peptide-based vac-
cines are composed of short or long peptides de-
rived from TAAs or neoantigens. As common exam-
ples, vaccines targeting melanoma-associated anti-
gen (MAGE), NY-ESO-1, or human papillomavirus
(HPV) E6/E7 peptides are well-studied. Dendritic
cell (DC) vaccines are also increasingly recognized;
they are loadedwith tumor antigens ex vivo and then
reintroduced into the patient to stimulate a robust
immune response88. For instance, DCs pulsed with
peptides from prostate-specific antigen (PSA) have
been evaluated in prostate cancer, demonstrating
safety and immunogenicity in early trials86. Mean-
while, DNA/RNA vaccines encode peptides or pro-
teins from TAAs or neoantigens that are expressed
in the patient’s cells, leading to strong antigen pre-
sentation and immune activation. A notable exam-
ple is DNAvaccines encodingHER2/neu peptides for
breast cancer, which have elicited antigen-specific T
cell responses in phase I studies89.

Recent mRNA-based neoantigen vaccine
trials
Recent advancements in therapeutic cancer vaccines
have increasingly focused on combining precision-
targeting strategies, including tumor-targeting pep-
tides, with mRNA-based technologies. One piv-
otal development is the use of personalized mRNA-
based neoantigen vaccines, which encode patient-
specific tumor antigens to stimulate robust immune
responses90. An important example is Autogene
cevumeran (BNT122), an mRNA-lipoplex vaccine
that encodes up to 20 tumor-specific neoantigens
identified from individual patients. In a phase
I trial in resected pancreatic ductal adenocarcinoma
(PDAC), this vaccine induced durable and robust
neoantigen-specific CD8+ T cell responses in 8 of 16
patients. Notably, patients who responded had sig-
nificantly improved recurrence-free survival upon
combination of the vaccine with atezolizumab and
chemotherapy91.
From the perspective of tumor-targeting peptides
(TTPs), these peptide-based ligands can further en-
hance mRNA-based vaccine systems by enabling
tumor-selective delivery and targeted immune ac-
tivation. Essentially, mRNA vaccines that en-
code neoantigens can be co-formulated with tumor-
targeting peptides, such as in peptide-modified
nanoparticles or lipoplexes, to further enhance ac-
cumulation at tumor sites and reduce off-target ef-
fects92. mRNA–lipoplex vaccines in PDAC have
been shown to prime long-lived CD8+ T cells that
target somatic mutation-derived neoantigens. In a
preclinical and early-phase human study, anmRNA–
lipoplex formulation elicited sustained neoantigen-
specific T cell immunity, addressing the challenge of
T cell durability in pancreatic cancer93.
iNeo-Vac-R01, another personalized mRNA neoanti-
gen vaccine, is under evaluation in phase I trials
(NCT06019702, NCT06026774) for advanced solid tu-
mors including melanoma and non-small cell lung
cancer. Early results demonstrate a favorable safety
profile and the induction of neoantigen-specific T
cells in most patients by week 6 of vaccination94. In
renal cell carcinoma, a phase I trial (NCT02950766)
of a peptide-based neoantigen vaccine in high-risk,
fully resected clear cell renal cell carcinoma showed
no recurrences at a median follow-up of 40.2 months
and excellent safety, supporting further develop-
ment of personalized neoantigen approaches and
demonstrating the potential of peptides as both im-
munogenic agents and targeting tools95.
These studies collectively demonstrate that mRNA-
based neoantigen vaccines can be manufactured
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rapidly for individual patients, are well tolerated,
and effectively prime neoantigen-specific CTLs,
with early evidence of improved clinical outcomes
in pancreatic, renal, and other solid tumors. Contin-
ued enrollment in these and larger phase II/III trials
will further clarify their impact on long-term sur-
vival and recurrence rates93. These results under-
score that tumor-targeting peptides are important
building blocks in the domain of therapeutic vacci-
nation and effective in drug delivery systems. As the
demand for targeted, tumor-specific immunother-
apies continues to grow, incorporating them into
mRNAvaccination systems presents a promising hy-
brid strategy.

Photodynamic Therapy
Photodynamic therapy (PDT) is a minimally inva-
sive treatment modality that uses light-activated
compounds known as photosensitizers (PSs) to in-
duce cytotoxic effects in targeted cells. Tumor-
targeting peptides (TTPs) enhance tumor specificity
by delivering PSs to tumor cells96. While PSs re-
main inactive in the dark, they become cytotoxic
upon exposure to visible or near-infrared light; this
transference of energy to ground-state oxygen pro-
duces reactive oxygen species (ROS) that mediate
cell death97.

Reactive Oxygen Species Mechanisms
PDT relies on two main photochemical pathways.
In Type I, electrons or hydrogen atoms are trans-
ferred from the excited PS to substrates (e.g., wa-
ter, biomolecules), producing radical ions that sub-
sequently react with oxygen to form superoxide an-
ion (O2• -), hydrogen peroxide (H2O2), and hydroxyl
radicals (• OH)98. In Type II, energy is directly
transferred from the excited PS to molecular oxygen
(3O2), generating singlet oxygen (1O2), which causes
oxidative damage to lipids, proteins, and DNA—
triggering apoptosis, necrosis, and disruption of tu-
mor vasculature. Recent findings highlight the PS-
induced ROS/RNS interplay: singlet oxygen can re-
act with nitric oxide to form peroxynitrite (ONOO−),
thereby amplifying cell death signals99.

Hypoxia in the Tumor Microenvironment
Hypoxia (O2 < 2%) in solid tumors reduces Type
II PDT efficacy by limiting oxygen availability for
singlet-oxygen generation. These hypoxic niches
also upregulateHIF-1α , promoting angiogenesis and
therapy resistance100.

Hypoxia-Activated Photosensitizers
To overcome hypoxia, several hypoxia-activated PSs
(HAPs) have been developed:

• Nitroreductase-Activated PS (CyNT-F):
A nitroreductase-responsive PS that remains
non-fluorescent until its enzymatic reduction
in hypoxic tumors. In murine xenografts,
CyNT-F showed 2-fold higher tumor accumu-
lation and >90% tumor inhibition compared
with non-activated controls101.

• Hypoxia-Tolerant Polymeric PS Prodrug
(HTPS_Niclo): A polymeric conjugate com-
bining a PS with niclosamide. In BALB/c mice,
HTPS_Niclo PDT achieved a tumor inhibition
rate of 91.2% and extended median survival
from 39 to 60 days versus Type I PDT alone102.

• AQ4N@CPC-FA System: A dual-function
prodrug encapsulating the hypoxia-activated
chemotherapy agent AQ4N with a folate-
targeted lipid PS. In hypoxic tumormodels, this
combination increased ROS generation under
low-oxygen conditions and reduced tumor vol-
ume by 78% at day 14 post-treatment103.

• NIR-Activated HAP Anchoring (ICy-N): A
cyanine-based PS that is selectively reduced
and activated in hypoxic regions, demonstrat-
ing deep-tissue NIR fluorescence and >70% tu-
mor regression in orthotopic models104.

By directing hypoxia-activated photosensitizers
(HAPs) precisely to hypoxic tumor microenviron-
ments, TTPs significantly improve the selectivity
and therapeutic efficacy of HAPs. Researchers have
found that conjugating HAPs with TTPs not only
improves tumor accumulation but also enhances
tissue penetration and strengthens photodynamic
effects in low-oxygen environments, making this
combination a potent tactic for targeted cancer
phototherapy105.

Clinical Case Studies & Emerging Trials
While most HAP systems remain in preclinical
stages, early clinical data are emerging. A Phase
I trial (NCT04560722) of a nitroimidazole-conjugated
PS in head and neck carcinoma reported a 50% objec-
tive response rate and manageable mucositis, with
pronounced PS accumulation in hypoxic tumor cores
(unpublished, investigator’s report). Furthermore,
topical TTP-PS formulations for non-melanoma skin
cancers showed complete remission in 85% of lesions
at 6-month follow-up, with minimal off-target pho-
totoxicity106.
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Immunomodulatory Effects
Beyond direct cytotoxicity, PDT-generated ROS can
promote immunogenic cell death, releasing tumor
antigens and danger signals (e.g., HMGB1, calreti-
culin), which activate dendritic cells and tumor-
specific T cells107. Notably, HTPS_Niclo treatment
increased the infiltration of CD8+ T cells by 2.5-fold,
suggesting synergy between ROS-mediated cytotox-
icity and anti-tumor immunity108.

Immunotherapy and Radiotherapy
TTPs can deliver radionuclides to tumor cells for tar-
geted radiotherapy, minimizing radiation exposure
to healthy tissues. When cancer cells are exposed
to radiation, radiosensitizers intensify DNA dam-
age, increasing the therapy’s efficacy. For instance,
alpha-emitting radionuclides conjugated with TTPs
are used in targeted alpha therapy (TAT) to de-
stroy tumor cells locally and effectively. To increase
the effectiveness of external beam radiation therapy
(EBRT), TTPs can be conjugated with radiosensitiz-
ers109. Radiosensitizers enhance DNA damage in
cancer cells upon radiation exposure, improving the
outcomes of EBRT110. Similarly, TAT utilizes alpha-
emitting radionuclides conjugated with TTPs for po-
tent tumor cell destruction111.

RECENT ADVANCEMENTS IN
TUMOR-TARGETING PEPTIDES
Recent breakthroughs in tumor-targeting peptides
(TTPs) have significantly transformed the field of
cancer therapy and diagnostics (Table 1). These
peptides, which can specifically bind to tumor cells
and their microenvironment, provide a powerful
strategy for more precise and effective cancer treat-
ments121–124.

Methodological Advancements and Pep-
tide Engineering
Phage display and computational modeling have ex-
panded peptide libraries, while advanced compu-
tational tools have facilitated the identification of
high-affinity peptides. High-throughput screening
of peptide libraries has enabled the discovery of
novel TTPs with improved affinity and specificity
for tumor markers125. In addition, chemical mod-
ifications have led to the incorporation of D-amino
acids, cyclization, and PEGylation into peptides, en-
hancing their stability, half-life, and binding affin-
ity. Conjugation strategies have enabled the de-
velopment of dual-function peptides that can target

multiple receptors or carrymultiple therapeutic pay-
loads. Similarly, coupling peptides with nanoparti-
cles has enhanced targeted drug delivery126,127. The
advantages and disadvantages of different produc-
tion methods for cancer-targeting peptides are high-
lighted in Table 2.

Multifunctional Peptides
Peptides are engineered to target multiple recep-
tors or pathways simultaneously, which enhances
their efficacy and reduces the likelihood of resis-
tance. Peptides that combine both therapeutic and
diagnostic functions pave the way for theragnostic
(simultaneous therapy and diagnostics)131–134.

Delivery Systems
Incorporation of TTPs into nanoparticles, liposomes,
or micelles significantly improves their stability,
bioavailability, and targeted delivery. Moreover, in-
tracellular delivery of therapeutic agents can be en-
hanced by coupling them with cell-penetrating pep-
tides135. Liposomes, which are spherical vesicles
composed of lipid bilayers, can encapsulate TTPs,
thereby protecting them from degradation and en-
abling targeted delivery through surface modifica-
tion with tumor-specific ligands136. Biodegrad-
able polymers such as PLGA (poly(lactic-co-glycolic
acid)) can be used to create nanoparticles that en-
capsulate TTPs, providing controlled release and im-
proved stability137. Dendrimers, featuring a highly
branched, tree-like structure, can carry multiple
peptide molecules, enhancing their solubility and
stability138. Gold nanoparticles, silica nanoparti-
cles, and other inorganic materials can be function-
alized with TTPs for targeted delivery and imaging
applications139.

Translational Status of Nanoparticle-
Based Tumor-Targeting Peptide Strategies
Recent advancements in nanoparticle-based TTP
strategies have demonstrated promising results in
both preclinical and clinical settings. Understanding
the translational status of these approaches remains
crucial for assessing their immediate and future clin-
ical potential140.

Preclinical Developments
In thyroid cancer, a combined chemotherapy and
photothermal therapy approach was administered
using polydopamine nanoparticles loaded with dox-
orubicin. This strategy demonstrated more potent
anti-cancer activity than comparable materials, with

7610



Biomedical Research and Therapy 2025, 12(7):7602-7620

Figure 3: Applications of TTPs in oncology: Peptide-drug conjugate targeting HER2+ tumors, Fluorescent
TTPs for surgical margin delineation, Radiolabeled TTPs for PET imaging.

Table 1: FDA-approved Tumor-Targeting peptides

Peptide Name Target
Receptor

Approved 
Indication

Clinical Use Reference

Lutetium Lu 177
vipivotide tetrax-
etan (PluvictoTM)

PSMA PSMA-positive
metastatic
castration-resistant
prostate cancer
(mCRPC)

Used after androgen receptor inhibitors ±
taxane chemotherapy; prolongs OS (15.3
vs. 11.3 months); also effective pre-taxane
(PSMA fore trial)

109,110

Belantamab
mafodotin-blmf
(Blenrep®)

BCMA Relapsed or re-
fractory multiple
myeloma (≥4 prior
lines)

Initially accelerated approval based on 31%
ORR (DREAMM-2); later withdrawn in US
due to DREAMM-3; DREAMM-7 supports
ongoing use in combinations

111,112

Loncastuximab
tesirine-lpyl
(ZynlontaTM)

CD19 Relapsed/refractory
large B-cell lym-
phoma

Approved after ≥2 prior systemic ther-
apies; ORR 48.3%, CR 24.1% (LOTIS-2);
durable response of 10.3 months

113,114

Piflufolastat F 18
(Pylarify®)

PSMA Imaging agent for
prostate cancer

Detects PSMA+ lesions in suspected metas-
tasis or recurrence; changes management
in ~45–74% of cases

115,116

Nirogacestat
(OgsiveoTM)

Gamma sec-
retase

Progressive
desmoid tumors
needing systemic
therapy

Reduced risk of progression by 71% (DeFi
trial); ORR 41%, improved pain/function;
20% serious AEs

117,118

Sacituzumab
govitecan-hziy
(Trodelvy®)

Trop-2 mTNBC,
HR+/HER2−

metastatic breast
cancer

Improves OS vs chemotherapy in both
TNBC (ASCENT) and HR+/HER2−

(TROPiCS-02); serious AEs: neutropenia,
diarrhea

119,120
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Table 2: Pros and Cons of different production methods of Anti-cancer peptides.

Production
Method

Pros Cons Affinity Cost Typical
Yield References

Solid-phase
peptide
synthesis
(SPPS)

High purity, high
throughput, automa-
tion possible

Expensive reagents,
less suitable for very
long peptides

High
(nM–pM)

High Moderate~100 mg
per batch

125,126

Solution-
phase
peptide
synthesis
(SuPPS)

Greater flexibility in
modifying peptides

More complex pu-
rification, lower effi-
ciency than SPPS

Moderate–
High

High Low 2–70mg per
batch

104

Enzymatic
hydrolysis

Eco-friendly, fewer
toxic reagents

Low specificity,
yields mixed pep-
tides

Variable
(de-
pends on
source)

Low Moderate17.21
mg/mL

127

Recombinant
DNA tech-
nology

Enables large-scale pro-
duction, cost-effective
in long-term

Endotoxin risk,
needs purifi-
cation, limited
post-translational
modifications

Moderate–
High

Low–
Medium

High 60–80 mg/L 128

Extraction
from natu-
ral sources

Naturally occurring
peptides, low immuno-
genicity

Labor-intensive,
inconsistent batch
quality

Variable High Low 9–15 mg/g
of tissue

129

Phage Dis-
play

Rapid screening of
high-affinity ligands,
suitable for cancer
targeting

Requires post-
selection synthesis,
bias in library
diversity

Very
High
(pM–nM)

Low High Screening
yields
clones;
synthesis
needed

130

these nanoparticles showing heightened tumor tar-
geting and therapeutic efficacy in both in vitro and
in vivomodels141. Self-assembling nanodrugs based
on iRGD have also been developed to improve drug
delivery and enable deeper tumor penetration. In
preclinical studies, these nanodrugs have demon-
strated significant tumor inhibition142. Addition-
ally, co-delivering miR-34a and cisplatin with RGD-
decorated liposomes has yielded enhanced therapeu-
tic outcomes in preclinical research143.

Clinical Advancements
While many nanoparticle-based TTP strategies re-
main in the preclinical stage, some have advanced to
clinical evaluations. NBTXR3 (Hensify®), a radio-
enhancer composed of hafnium oxide nanoparticles,
is engineered to amplify the efficacy of radiother-
apy. It has undergone Phase II/III clinical trials for
soft tissue sarcoma and is being evaluated in other
cancer types. In the study (NCT02379845), com-
bining NBTXR3 with preoperative radiation ther-
apy doubled the pathologic complete response rate

compared to radiotherapy alone (16.1% vs. 7.9%),
while maintaining a favorable safety profile with
no significant increase in serious adverse events144.
Nanobiotix, the developer of NBTXR3, received Eu-
ropean market approval (CE marking) for Hensify®
in treating locally advanced soft tissue sarcoma145.
Meanwhile, clinical trials investigating nanoparti-
cles functionalized with tumor-specific ligands have
demonstrated improved tumor localization and en-
hanced therapeutic efficacy in patients with vari-
ous malignancies. A study (NCT03712423) utilized
PET/CT imaging to assess tumor uptake of 89Zr-
CPC634 in patients with solid tumors, revealing that
a diagnostic dose accurately reflected on-treatment
tumor accumulation, highlighting its potential in pa-
tient stratification for cancer nanomedicine144.

Personalized Medicine
patient-specific development of TTPs builds on the
unique molecular profile of a patient’s tumor, max-
imizing treatment efficacy. This approach leverages

Scalability
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the uniquemolecular and genetic profiles of each pa-
tient’s tumor to design highly specific and effective
therapeutic agents. This personalized strategy aims
to maximize treatment efficacy while reducing ad-
verse effects. Tumor profiling, target identification,
and peptide synthesis are crucial elements in the de-
velopment of patient-specific TTPs145–147.

EMERGING AND FUTURE
PROSPECTS
Recent breakthroughs in peptide-based cancer ther-
apies underscore the potential of integrating artifi-
cial intelligence (AI) and machine learning (ML) to
transform drug discovery and design148. AI-driven
models can rapidly explore vast peptide/protein se-
quence spaces, enabling the identification of novel
therapeutic candidates with enhanced specificity
and efficacy. As these technologies advance, they
are anticipated to accelerate the development of
peptide-based agents, minimizing human error and
expediting their clinical application in oncology149.

Advanced Computational Peptide Design
The integration of AI and ML has substantially ad-
vanced the design of tumor-targeting peptides. One
notable development is CreoPep, a deep-learning-
based framework that combines masked language
modeling with progressive masking to generate
high-affinity peptide mutants. This approach has
demonstrated sub-micromolar potency against the
α7 nicotinic acetylcholine receptor, broadening the
diversity of therapeutic peptides beyond natural
variants150.
Another innovative tool is Light CPPgen, which in-
tegrates a LightGBM-based predictive model with
a genetic algorithm to design cell-penetrating pep-
tides (CPPs). By focusing on features that influence
CPP translocation capacity, this method enhances
the efficiency of peptide design while maintaining
interpretability151.

Synergy with CRISPR/Cas-Based Screen-
ing
CRISPR/Cas-based genetic alteration screens have
emerged as a powerful tool for identifying novel tar-
gets in cancer immunotherapy. These screens en-
able large-scale discovery of genes involved in tumor
antigen presentation and immune evasion, which
helps in the design of peptides that modulate im-
mune responses against tumors more effectively. By
integrating CRISPR screening data with peptide de-
sign, researchers can develop peptides that either

enhance tumor immunogenicity or inhibit immune
checkpoints, offering a synergistic approach to can-
cer therapy and drug delivery152.

Advanced Biomaterials for Tumor Mi-
croenvironment (TME) Responsive Drug
Release
Because the TME is highly diverse and heteroge-
neous, delivering medications to tumors remains
challenging. However, new biomaterial advance-
ments enable the development of systems that re-
lease peptides upon encountering tumor-specific
markers. For instance, stimuli-responsive peptide
hydrogels have been engineered to respond to ex-
ternal stimuli such as temperature, pH, or enzymatic
activity, facilitating controlled drug release and im-
proving therapeutic outcomes. Additionally, pH-
responsive supramolecular TTP peptide hydrogels
exhibit reversible sol–gel transitions in response to
pH changes, making them particularly useful for tar-
geted drug delivery in acidic tumor environments50.

CONCLUSIONS
Tumor-targeting peptides (TTPs) have emerged as
highly promising agents in cancer therapy due to
their ability to selectively target tumor-associated
antigens, receptors, or the tumor microenviron-
ment. Innovations such as peptide-drug conjugates
(PDCs), cell-penetrating peptides (CPPs), and multi-
functional hybrid peptides are boosting tumor pen-
etration and therapeutic efficacy. These peptides
function primarily through receptor-mediated tar-
geting, optimizing drug delivery while minimizing
off-target effects. Mechanistically, TTPs either act as
direct cytotoxic agents (e.g., pro-apoptotic peptides),
serve as carriers for chemotherapeutics, radionu-
clides, or nanoparticles, or modulate immune re-
sponses to enhance antitumor activity. Cancer cells
can be visualized using radiolabeled peptides. Pep-
tides linked to integrins are used to deliver targeted
treatments, and immunotherapy employs peptide-
based vaccines. With the integration of AI and high-
throughput methods, stable and highly specific pep-
tides can be identified more quickly.

ABBREVIATIONS
α-SMA (Alpha-Smooth Muscle Actin); AI (Artifi-
cial Intelligence); APCs (Antigen-Presenting Cells);
Bevacizumab (Avastin, Anti-VEGF monoclonal
antibody); CAFs (Cancer-Associated Fibroblasts);
CME (Clathrin-Mediated Endocytosis); CPPs (Cell-
Penetrating Peptides); CSF-1R (Colony-Stimulating
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Figure 4: Advancements in TTP design i-e Cyclization for stability, Dual-targeting peptides, PLGA
nanoparticle conjugates for controlled release.

Factor 1 Receptor); CT (Computed Tomography);
CTCs (Circulating Tumor Cells); CTLs (Cytotoxic
T Lymphocytes); CvME (Caveolin-Mediated Endo-
cytosis); CXCL12 (C-X-C Motif Chemokine Lig-
and 12); DC (Dendritic Cell); EBRT (External
Beam Radiation Therapy); ECM (Extracellular Ma-
trix); EGFR (Epidermal Growth Factor Receptor);
EVs (Extracellular Vesicles); FAP (Fibroblast Acti-
vation Protein); FDA (Food and Drug Administra-
tion); FGFs (Fibroblast Growth Factors); H2O2 (Hy-
drogen Peroxide); HAPs (Hypoxia-Activated Pho-
tosensitizers); HER2 (Human Epidermal Growth
Factor Receptor 2); HIFs (Hypoxia-Inducible Fac-
tors); IL-6 (Interleukin-6); MHC (Major Histo-
compatibility Complex); ML (Machine Learning);
MMPs (Matrix Metalloproteinases); MRI (Mag-
netic Resonance Imaging); NBTXR3 (Hensify®,
Hafnium oxide nanoparticle radio-enhancer); NIR
(Near-Infrared); Nivolumab (Anti-PD-1 mono-
clonal antibody);O2 • - (Superoxide Anion); •
OH (Hydroxyl Radical); ONOO− (Peroxynitrite);
1O2 (Singlet Oxygen); PD-1 (Programmed Cell
Death Protein 1); PD-L1 (Programmed Death-
Ligand 1); PD-L2 (Programmed Death-Ligand 2);
PDCs (Peptide-Drug Conjugates); PDT (Photody-
namic Therapy); PET (Positron Emission Tomog-
raphy); PLGA (Poly(lactic-co-glycolic acid)); PSs
(Photosensitizers); Provenge (Sipuleucel-T, Autol-
ogous cellular vaccine); RGD (Arginine-Glycine-
Aspartic Acid, peptide sequence); ROS (Reactive

Oxygen Species); SPECT (Single-Photon Emission
Computed Tomography); TAAs (Tumor-Associated
Antigens); TAT (Targeted Alpha Therapy); TGF-β
(Transforming Growth Factor Beta); TME (Tumor
Microenvironment); TTPs (Tumor-Targeting Pep-
tides); VEGF (Vascular Endothelial Growth Factor);
VEGFR (Vascular Endothelial Growth Factor Recep-
tor).
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